FUNCIONES DE CONFIABILIDAD Y DESEMPEÑO SÍSMICO DE CORTINAS DE CONCRETO
DOI:
https://doi.org/10.18867/ris.106.579Palabras clave:
presas de concreto, funciones de confiabilidadResumen
En este trabajo se presenta la aplicación de los principios de confiabilidad estructural para la estimación de la probabilidad de falla en cortinas de presas construidas con concreto. Se establecieron las funciones de estado límite para el agrietamiento en el cuerpo de la cortina y el deslizamiento de su base con respecto a la cimentación. Se utilizó el concepto del índice de reducción de rigidez secante presentado por Esteva et al. (2011) como una medida de la degradación de rigidez global de la cortina por la presencia de agrietamientos, a través de los resultados de un modelo bidimensional de elementos finitos (MEF2D), considerando un comportamiento no lineal en el concreto. La posibilidad del deslizamiento fue evaluada a través de los resultados del modelo MEF2D y a partir de un modelo de Cuerpo Rígido (MCR), incluyendo la variación espacial de la cohesión y el ángulo de fricción en la zona de contacto de la base de la cortina con la cimentación. Para obtener las intensidades sísmicas de falla se aplicó el concepto del análisis dinámico incremental (IDA), escalando los registros sísmicos en términos de intensidad y contenido de frecuencias, mediante el método híbrido de simulación de historias de movimiento del terreno propuesto por Ismael y Esteva (2006). Finalmente se presenta la comparación de las funciones de confiabilidad y las curvas de fragilidad de los modos de falla considerados.
Descargas
Citas
Aguirre, J y K Irikura (2004). “Source characterization of Mexican subduction earthquakes for the prediction of strong ground motions”. 13th World Conference on Earthquake Engineering, 1 August. Issue 1572. https://www.iitk.ac.in/nicee/wcee/article/13_1572.pdf
Alamilla, J, L Esteva, J García-Pérez y O Díaz-López (2001). Earthquake engineering challenges and trends. Honoring Luis Esteva. Simulating earthquake ground motion at a site, for given intensity and uncertain source location. Instituto de Ingeniería de la UNAM. Universidad Nacional Autónoma de México. ISBN: 970-32-3699-5. DOI: 10.29104/phi-aqualac/2010-v2-2-03
Bernier, C, J Padgett, J Proulx y P Paultre (2016). “Seismic fragility of concrete gravity dams with spatial variation of angle of friction: Case Study”. Journal of Structural Engineering, pp. 1-11. ISSN 0733-9445. DOI: 10.1061/(ASCE)ST.1943-541X.0001441
Bhattacharjee, S y P Leger (1992). “Concrete constitutive models for nonlinear seismic analysis of gravity dams - State of the art”. Canadian Journal of Civil Engineering, Volumen 19, pp. 492-509. DOI: 10.1139/l92-059
Bretas, E M, J V Lemos y P B Lourenco (2016). “Seismic analysis of masonry gravity dams using the discrete element method: Implementation and application”. Journal of Earthquake Engineering, 20:157–184, 2016. ISSN: 1363-2469. DOI: 10.1080/13632469.2015.1085463
Burman, A (2012). “Transient analysis of aged concrete dam-foundation coupled system”. Ph.D. Dissertation. Indian Institute of Technology Guwahati. http://gyan.iitg.ernet.in/bitstream/handle/123456789/230
CONAGUA (2001). “Manual para capacitación en seguridad de presas, Módulo: Evaluación de la estabilidad en presas de concreto. Traducción autorizada de United States Bureau of Reclamation”, Subdirección General Técnica, Gerencia de Ingeniería Básica y Normas Técnicas, México. Comisión Nacional del Agua. Secretaría de Medio Ambiente y Recursos Naturales.
Cornell, C A (1969). “A probability-based structural code”. Journal of the American Concrete Institute, 12(66), pp. 974-985. https://www.concrete.org/publications/7446
DOF, (2016). “NMX-AA-175-SCFI-2015. Operación segura de presas parte 1.- Análisis de riesgo y clasificación de presas”. Diario Oficial de la Federación-Secretaría de Economía. https://www.gob.mx/cms/uploads/attachment/file/166836
Esteva, L (1970). “Regionalización sísmica de México para fines de ingeniería”. México, Series del Instituto de Ingeniería de la UNAM. Universidad Nacional Autónoma de México. https://aplicaciones.iingen.unam.mx/ConsultasSPII/DetallePublicacion.aspx?id=152
Esteva, L, D Campos y O Diaz-López (2011). “Life-cycle optimisation in earthquake engineering”. Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance. Volumen 7:1-2, pp. 33-49. DOI: 10.1080/15732471003588270
Esteva, L, O Díaz-López, J García-Pérez, G Sierra y E Ismael (2002). “Life-cycle optimization in the establishment of performance-acceptance parameters for seismic design”. Structural Safety, Issue 24, pp. 187-204. DOI: 10.1016/S0167-4730(02)00024-3
Gogoi, I y D Maity (2007). “Influence of sediment layers on dynamic behavior”. Journal of Engineering Mechanics. Volumen 133, Issue 4. DOI: 10.1061/(ASCE)0733-9399(2007)133:4(400)
ICOLD (1995). “Dam failures statistical analysis”. International Comission on Large Dams. Boletín 99. https://www.icold-cigb.org/GB/publications/bulletins.asp
ICOLD (2016). “Selecting seismic parameters for large dams”. International Comission on Large Dams. Boletín 148. https://www.icold-cigb.org/GB/publications/bulletins.asp
Ismael, E y L Esteva (2006). “A hybrid method for simulating strong ground motions records”. First European Conference on Earthquake Engineering and Seismology, Issue 1265. Ginebra, Suiza. ISBN: 9781615676750. http://www.proceedings.com/06775.html
Jaimes, M A, A Ramírez-Gaytan y E Reinoso (2015). “Ground-motion prediction model from intermediate-depth intraslab earthquakes at the hill and lake-bed zones of Mexico City”. Journal of Earthquake Engineering, 00:1–19, 2015. DOI: 10.1080/13632469.2015.1025926
Membrilla, M, I Escuder, J González y L Altarejos (2005). “Aplicación del análisis de riesgos a la seguridad de presas”. Editorial UPV-Universidad Politécnica de Valencia. Ref.: 2005.2522. DOI: 10.4995/thesis/10251/7350
MOC (2008). “Manual de diseño de obras civiles. Diseño por sismo. México”. Instituto de Investigaciones Eléctricas. Comisión Federal de Electricidad.
MOC (2015). “Manual de diseño de obras civiles. Diseño por sismo. México”. Instituto de Investigaciones Eléctricas. Comisión Federal de Electricidad.
Ordaz, M, J Arboleda y S K Singh (1995). “A scheme of random summation of an empirical Green´s Function to estimate ground motions from future large earthquake”. Bulletin of the Seismological Society of America, 85(6), pp. 1635-1647. DOI: 10.1785/BSSA0850061635
Rosenblueth, E (1970). “Confiabilidad y utilidad en ingeniería”. Serie azul del Instituto de Ingeniería de la UNAM. Universidad Nacional Autónoma de México. p. 48. https://aplicaciones.iingen.unam.mx/ConsultasSPII/DetallePublicacion.aspx?id=147
SPANCOLD (2012). “Guía técnica de explotación de presas y embalses. Tomo 1. Análisis de riesgos aplicado a la gestión de seguridad de presas y embalses”. Comité Nacional Español de Grandes Presas. https: https://www.spancold.org/producto/guia-tecnica
USACE (1995). “Gravity dam design. EM 1110-2-2200”. Department of the Army. United State Army Corps of Engineers. Washintong, DC, 20314-1000. https://www.publications.usace.army.mil/EM_1110-2-2200
USACE (2001). Seismic testing of a 1/20 scale model of Koyna Dam- ERDCTR-01-17. Engineer Research and Development Center. United State Army Corps of Engineers. https://erdc-library.erdc.dren.mil/jspui/handle/11681/8535
USACE (2014). “Safety of dams - Policy and procedures-ER 1110-2-1156”. Department of the Army. United State Army Corps of Engineers. , Washintong, DC, 20314-1000. https://www.publications.usace.army.mil/ER_1110-2-1156
USBR (1976). “Design of gravity dams”. United State Bureau of Reclamation. Denver, Colorado. https://www.usbr.gov/tsc/techreferences/mands/mands-pdfs/GravityDams.pdf
USBR (1999). “Dynamic properties of mass concrete obtained from dam cores”. United State Department of The Interior. Bureau of Reclamation. Dam Safety Office. DSO-98-15. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/4624
Vamvatsikos, D y A Cornell (2002). “Incremental dynamic analysis”. Earthquake Engineering and structural dynamics. Issue 31, pp. 491-514. DOI: 10.1002/eqe.141
Westberg, M (2010). “Reliability-based assessment of concrete dam stability”. Ph. D. Dissertation. Stockholm, Sweden: Lund University, Division of Structural Engineering. http: https://portal.research.lu.se/portal/en/publications/reliabilitybased-assessment-of-concrete-dam-stability(58629968-65db-4e4d-bac8-d66bd1cbfd67)/bibtex.html
Westberg, M y F Johansson (2013). “System reliability of concrete dams with respect to foundation stability: Application to a spillway”. Journal of geotechnical and geoenvironmental engineering, American Society of Civil Engineer, 139(2), pp. 308-319. ISSN1090-0241/2013/2-308–319. DOI: 10.1061/(ASCE)GT.1943-5606.0000761