SIMPLIFIED METHOD FOR SEISMIC DESIGN OF CONCRETE FRAME BUILDINGS EQUIPPED WITH VISCOUS DAMPERS WITH NONLINEAR BEHAVIOUR

Autores/as

  • Juan C. Álvarez
  • Héctor Guerrero Bobadilla The University of Manchester
  • Amador Terán
  • Ángel Moreno

DOI:

https://doi.org/10.18867/ris.109.583

Palabras clave:

amortiguadores viscosos no lineales, Modelo equivalente de 1GDL

Resumen

En este trabajo se presenta un método simplificado para el diseño de estructuras equipadas con amortiguadores viscosos no lineales. El método consiste en estimar los desplazamientos máximos de una estructura utilizando un modelo de un grado de libertad (1GDL) equivalente y dos coeficientes de desplazamiento. El primer coeficiente relaciona los desplazamientos máximos de un modelo de varios grados de libertad (VGDL) equipado con amortiguadores viscosos lineales entre los desplazamientos máximos obtenidos en un modelo de 1GDL equivalente. El segundo coeficiente relaciona los desplazamientos máximos de un modelo de VGDL con amortiguadores viscosos no lineales entre aquellos obtenidos del mismo modelo, pero con amortiguadores viscosos lineales. Se proponen ecuaciones para obtener, de forma simple, ambos coeficientes de desplazamiento para algunos exponentes de velocidad de amortiguadores comerciales. Se presenta un ejemplo de aplicación del método que consiste en un modelo de doce niveles equipado con amortiguadores viscosos no lineales. El método se valida con análisis dinámicos no lineales tipo paso a paso considerando varios movimientos sísmicos. Se discuten los resultados y se ofrecen conclusiones.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Héctor Guerrero Bobadilla, The University of Manchester

PhD Candidate

Citas

Akcelyan, S, D G Lignos, T Hikino, M Nakashima (2016), “Evaluation of Simplified and State-of-the-Art Analysis Procedures for Steel Frame Buildings Equipped with Supplemental Damping Devices Based on E-Defense Full-Scale Shake Table Tests”, Journal of Structural Engineering, 142:04016024. DOI:10.1061/(ASCE)ST.1943-541X.0001474

Alotta, G, L Cavaleri, M Di Paola y M Ferrotto (2016), “Solutions for the Design and Increasing of Efficiency of Viscous Dampers”, The Open Construction and Building Technology Journal 10 (Suppl 1: M6):106-121. DOI:10.2174/1874836801610010106

Álvarez, J C (2020), “Metodología Simplificada de Diseño de Edificios Equipados con Amortiguadores Viscosos no Lineales Ubicados en la Ciudad de México”, Tesis de Maestría, Instituto de Ingeniería, UNAM.

ASCE 7-10 (2010). Minimum design loads for buildings and other structures. Reston, Virginia: American Society of Civil Engineers; 2010.

ASCE 41-17 (2017), Seismic evaluation and retrofit of existing buildings. American Society of Civil Engineers, Estados Unidos de Norte América.

BMDSF (1999), Base mexicana de datos de sismos fuertes, Sociedad Mexicana de Ingeniería Sísmica, México.

Bojórquez, E y J Ruiz-García (2013), “Residual drift demands in moment-resisting steel frames subjected to narrow-band earthquake ground motions”, Earthq Eng Struct Dynam, 42:1583–98. DOI:10.1002/eqe.2288

Buendía, L y E Reinoso (2019), “Análisis de los Daños en Viviendas y Edificios Comerciales Durante la Ocurrencia del Sismo del 19 de septiembre de 2017”, Ingeniería sísmica, (101), 19-35, DOI:10.18867/ris.101.508

Christopoulos, C, y A Filiatrault (2006), Principles of passive supplemental damping and seismic isolation, Pavia, Italia: Imprenta del IUSS.

Constantinou, M y M Symans (1992), “Experimental and analytical investigation of seismic response of structures with supplemental fluid viscous dampers”, National Center for Earthquake Engineering Research, NCEER Report No. -92-0032.

DESMOS (2012), Programa de cálculo gráfico para funciones en el plano cartesiano, Recuperado el 8 de noviembre de 2019 de https://www.desmos.com/calculator.

Dong, B, R Sause y J M Ricles (2016), “Seismic response and performance of a steel MRF building with nonlinear viscous dampers under DBE and MCE", Journal of Structure Engineering, 142 (6): 04016023. DOI:10.1061/(ASCE)ST.1943-541X.0001482

ETABS Ultimate (2017), Programa de análisis estructural, versión 17.0.1, Computer and Structures, Inc. California, EUA.

Ezeh, J C, O M Ibearugbulem (2009), “Effect of axial deformation on the flexural behavior of one-bay multi-storey building frame”, International Journal of Natural and Applied Sciences, 5(4):351-356, 2009.

Georgoussis, G K (2006), "A Simple Model for Assessing Periods of Vibration and Modal Response Quantities in Symmetrical Buildings", The Structural Design of Tall and Special Buildings, 15, 139-151(2006). DOI:10.1002/tal.286

Gómez, D, J Marulanda y P Thomson (2008), “Sistemas de control para la protección de estructuras civiles sometidas a cargas dinámicas”, Revista científica DYNA, 155, pp. 77-89. ISSN 0012-7353

Guerrero, H, T Ji, J A Escobar y A Teran-Gilmore (2018), “Effects of buckling-restrained braces on reinforced concrete precast models subjected to shaking table excitation”, Engineering Structures, 163, 294-310. DOI:10.1016/j.engstruct.2018.02.055

Lin, W-H y A K Chopra (2002), “Earthquake response of elastic SDF systems with non-linear fluid viscous dampers”, Earthquake Engineering and Structural Dynamics, 31, 1623-1642. DOI:10.1002/eqe.179

Miranda, E (1996), "Approximate Seismic Lateral Deformation Demands in Multistory Buildings", Journal of Structural Engineering, Vol. 125, No. 4, 417-425. DOI:10.1061/(ASCE)0733-9445(1999)125:4(417)

Moreno, A (2019), “Respuesta Sísmica de Estructuras con Amortiguadores Viscosos no Lineales, en la Zona Del Lago de la Ciudad de México”, Tesis de Maestría, Instituto de Ingeniería, UNAM.

NTCA-2020 (2020), Normas Técnicas Complementarias para diseño y Construcción de Estructuras de Acero, Gaceta Oficial del Distrito Federal, julio.

NTCC-2020 (2020), Normas Técnicas Complementarias para diseño y Construcción de Estructuras de Concreto, Gaceta Oficial del Distrito Federal.

Palermo, M, S Silvestri, L Landi, G Gasparini y T Trombetti (2018), “A “direct five-step procedure” for the preliminary seismic design of buildings with added viscous dampers”, Engineering Structures, Volume 173, 2018, Pages 933-950, ISSN 0141-0296. DOI:10.1016/j.engstruct.2018.06.103

Pekcan, G, J Mander y S Chen (1999), “Fundamental Considerations for The Design of Non-Linear Viscous Dampers”, Earthquake Engineering and Structural Dynamics, 28, 1405-1425 (1999). DOI:10.1002/(SICI)1096-9845(199911)28:11<1405::AID-EQE875>3.0.CO;2-A

PRISM (2010), Programa de análisis de acelerogramas sísmicos, versión 2.0.1, Department of Architectural Engineering, INHA University, Corea del Sur.

Pujol, S, y M E Rodriguez (2019), “Performance evaluation of nonstructural walls in buildings in Mexico City during the September 19, 2017 Earthquake (in Spanish)”, Revista de Ingeniería Sísmica, No. 101, 53-66. DOI: 10.18867/ris.101.529

Ruiz, S (2018), “Review of Guidelines for Seismic Design of Structures with Damping Systems”, The Open Civil Engineering Journal, 12, 195-204. DOI:10.2174/1874149501812010195

SASID (2020), Sistema de acciones sísmicas de diseño de las normas técnicas complementarias para diseño por sismo, Gobierno de la Ciudad de México.

Seleemah, A y M Constantinou (1997), “Investigation of seismic response of buildings with linear and non-linear fluid viscous dampers”, National Center for Earthquake Engineering Research, NCEER Report No. 97-0004.

Soong, T y G Dargush (1997), Passive energy dissipation systems in structural engineering, John Wiley & Sons, Chichester.

Spencer, B y T Soong (1999), “New applications and development of active, semi-active and hybrid control techniques for seismic and non-seismic vibration in the USA”, International Post-SMiRT Conference Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Vibration of Structures.

Symans, M y M Constantinou (1998), “Passive fluid viscous damping systems for seismic energy dissipation”, ISET Journal of Earthquake Technology, Paper No. 382; 35(4):185 –206.

Symans, M, F Charney, A Whittaker, M Constantinou, C Kircher, M W Johnson y R J McNamara (2008), “Energy Dissipation Systems for Seismic Applications: Current Practice and Recent Developments”, Journal of Structural Engineering, 134(1), 3-21. DOI:10.1061/(ASCE)0733-9445(2008)134:1(3)

Taylor, D (2003), “History, design, and application of fluid dampers in structural engineering”, Recuperado el 15 de agosto de 2019 de https://www.taylordevices.com/technical-brief/68-history-design-and-applications-of-fluid-dampers-in-structural-engineering/.

Taylor, D y I Katz (2003), “Seismic protection with fluid viscous dampers for the torre mayor, a 57-story office tower in Mexico City”, Mexico, Recuperado el 15 de agosto de 2019 de https://www.taylordevices.com/white-paper/71-seismic-protection-with-fluid-viscous-dampers-for-the-torre-mayor-a-57-story-office-tower-in-mexico-city-mexico/.

Teran, A y N Virto (2009), “Preliminary design of low-rise buildings stiffened with buckling-restrained braces by a displacement-based approach”, Earthquake Spectra, vol. 25, pp. 185-211. DOI:10.1193/1.3054638

Terenzi, G (1999), “Dynamics of SDOF systems with non-linear viscous damping”, Journal of Engineering Mechanics, (ASCE) 125(8), 956–963. DOI:10.1061/(ASCE)0733-9399(1999)125:8(956)

Publicado

2022-12-31

Cómo citar

Álvarez , J. C., Guerrero Bobadilla, H., Terán, A., & Moreno, Ángel. (2022). SIMPLIFIED METHOD FOR SEISMIC DESIGN OF CONCRETE FRAME BUILDINGS EQUIPPED WITH VISCOUS DAMPERS WITH NONLINEAR BEHAVIOUR. Revista De Ingeniería Sísmica , (109), 110–146. https://doi.org/10.18867/ris.109.583

Número

Sección

Artículos

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.