REPARACIÓN ÓPTIMA DE ESCUELAS CON MUROS DE MAMPOSTERÍA Y MARCOS DE CONCRETO CON DAÑOS SÍSMICOS BASADA EN CONFIABILIDAD
DOI:
https://doi.org/10.18867/ris.106.590Palabras clave:
confiabilidad, ciclo de vida, reforzamiento, consecuencias de fallasResumen
El presente trabajo utiliza las técnicas de confiabilidad estructural para identificar la reparación óptima de estructuras con un sistema dual, concreto, y muros de mampostería, así como los costos y el ciclo de vida, para generar recomendaciones prácticas sobre el tipo de refuerzo para el estado límite de resistencia y el de servicio.
ISSN-e 2395-8251
Se incorporan los estados límite de resistencia y de servicio, y se analiza el comportamiento combinado del marco y los muros. Se identifican los posibles modos de falla desde la capacidad de flexión y corte hasta la deriva entre pisos en dos escuelas ubicada en Yautepec y Tlatenchi, en el Estado de Morelos. Las escuelas sufrieron daños considerables en los muros, afectando su nivel de seguridad después del sismo ocurrido el 19 de septiembre del 2017. Mediante la aplicación de la confiabilidad estructural y los conceptos de costos esperados en el ciclo de vida, se propone una formulación para generar niveles óptimos de actualización de seguridad para reparar escuelas dañadas por sismos. Se analizan los modelos con un software comercial (PERFORM 3D V7) y se obtienen las respuestas máximas para las escuelas mencionadas. Se utilizan coeficientes de variación de carga y resistencia reportados en la literatura, para obtener la probabilidad de falla de la escuela. La probabilidad de falla de una estructura para cada estado límite, se evalúa bajo las condiciones dañadas de la estructura, luego, sucesivamente, se proponen varios tipos de reforzamiento, y se calculan las probabilidades de falla correspondientes y el costo esperado en el ciclo de vida. Se analizan 3 alternativas de reparación, la introducción de: concreto reforzado, ángulos y soleras de acero y muros de concreto reforzado. La reparación óptima será aquella para la que se cumpla la del costo mínimo esperado en el ciclo de vida. Las complejidades del tema brindan la oportunidad para realizar trabajos multidisciplinarios, los cuales pueden ser una herramienta muy favorable para generar recomendaciones prácticas para ingenieros a cargo de reparaciones de estructuras.
Descargas
Citas
Alcocer, S, D Muriá, J Abarca, R Bautista, G Bogoya, V Cruz (2020) “Assessment of the seismic safety of school buildings in Mexico: A first look”. Earthquake Spectra, 36 (2_suppl); DOI: 10.1177%2F8755293020926184
Alcocer, S, D Muriá, J Abarca, R Bautista, G Bogoya, V Cruz, Y Martínez, B Moctezuma, D Ramírez, y G Valencia (2019), Guía técnica para la rehabilitación sísmica de edificios escolares de la Ciudad de México, Instituto de Ingeniería UNAM, Páginas 69-85, México. https://www.ilife.cdmx.gob.mx/storage/app/uploads/public/5e6/6a9/0d0/5e66a90d0c3fd540339007.pdf
American Society of Civil Engineers (ASCE/SEI 41-13, 2019), Seismic evaluation and retrofit of existing buildings, Page 255, Virginia, USA. DOI: 10.1061/9780784412855
Ang, A H-S y D De León (1997), “Determination of optimal target reliabilities for design and upgrading of structures”, Structural Safety, Part of special issue: Asian-Pacific Symposium on Structural Reliability and Its Application, Volume 19, Pages 91-103. DOI: 10.1016/S0167-4730(96)00029-X
Centro Nacional de Prevención de Desastres (CENAPRED) (2001), Norma para la evaluación del nivel de daño por sismo en estructuras y guía técnica de rehabilitación, Páginas 7-65, México. http://dimsec.com/wp-content/uploads/2017/10/NORMA-PARA-LA-EVALUACIO%CC%81N-POR-SISMO.pdf
CDS-2015 (2016), Capítulo de diseño por sismo, C.1.3, Manual de diseño de obras civiles, Comisión Federal de Electricidad, Instituto Nacional de Electricidad y Energías Limpias.
Cruz, J (2007), “Análisis de confiabilidad de edificios de concreto reforzado en zonas símicas considerando la acumulación del daño estructural durante la vida de servicio”, Tesis Doctoral, División de Estudios de Posgrado, Facultad de Ingeniería, UNAM.
Cruz, V M (2013), Los Sismos. Una Amenaza Cotidiana; Instituto de Geofísica de la Universidad Nacional Autónoma de México/Centro de Instrumentación y Registro Sísmico A.C., Cires, La Caja de Cerillos Ediciones S.A. de C.V. México City, México, 2013.
De León, D y A H-S Ang (1994), “A damage model for reinforced concrete buildings. Further study with the 1985 Mexico City earthquake”, 6th ICOSSAR, Innsbruck, Austria.
De León, D y E Ismael (2020), “Optimal retrofit strategy for a school under seismic hazard including risk assessment”, Civil engineering and environmental systems. DOI: 10.1080/10286608.2021.1977798
De León, D y A Donaji (2020), “Towards a resilient design and retrofit of schools in México”, 17th World Conference on Earthquake Engineering, Sendai, Japan.
De León, D y J L García (2021), “Reparación óptima basada en confiabilidad para una escuela con muro de México, mampostería y marcos de concreto con daños sísmicos”, XXII Congreso Nacional de ingeniería Estructural, Sala 1976-5, Aguascalientes, México.
De León, D y J L García (2021), “Cost effectiveness of retrofit alternatives for schools located on seismic zones”, Earthquakes and Structures, Techno-Press Journals, aceptado.
De León, D (1996), “Integrating socio-economics in the development of criteria for the aseismic design of reinforced concrete structures”, Ph.D. thesis, Department of Civil and Environmental Engineering, UC Irvine, CA, USA.
Esteva, L, O Díaz, J Garcia, G Sierra y E Ismael (2002), “Life-cycle optimization in the establishment of performance-acceptance parameters for seismic design”, Structural Safety, Volume 24, pages 187-204. DOI: 10.1016/S0167-4730(02)00024-3.
Federal Emergency Management Agency (FEMA 445) (2006) Next-Generation performance-based seismic design guidelines, program plan for new and existing buildings. Applied Research Council for the Federal Emergency Management Agency, Report no. FEMA 445. Washington, DC. https://www.atcouncil.org/pdfs/FEMA445.pdf
Federal Emergency Management Agency (FEMA 547) (2006) Techniques for the Seismic Rehabilitation of Existing Buildings, Federal Emergency Management Agency, Washington, USA. https://www.wbdg.org/FFC/DHS/fema547.pdf
Furlong, R W, C-T Hsu y S A Mirza (2004), “Analysis and design of concrete columns for biaxial bending”, ACI Materials Journal. 101. 413-423. DOI:10.14359/13101
García, J, G Hernández, J Corona, y U Mena (2018), "Desempeño sísmico de edificios tipo U2C-70 correspondiente a la infraestructura educativa”, XXI Congreso Nacional de ingeniería Estructural, México, https://www.researchgate.net/publication/329070667.
Gilani, A S J, H K Miyamoto y T Nifuku (2018), "Seismic risk assessment and retrofit of school buildings in developing countries”, Eleventh U.S. National Conference on Earthquake Engineering Integrating Science, Engineering & Policy. Los Angeles, California.
Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto (NTC-Concreto) (2017), Gobierno de la Ciudad de México, diciembre.
Normas Técnicas Complementarias sobre Criterios y Acciones para el Diseño Estructural de las Edificaciones (NTC-Criterios) (2017), Gobierno de la Ciudad de México, diciembre.
Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Mampostería (NTC-Mampostería) (2017), Gobierno de la Ciudad de México, diciembre.
Instituto Nacional de la Infraestructura Física Educativa (INIFED) (2011), Normas y especificaciones para estudios proyectos construcción e instalaciones, Instituto Nacional de la Infraestructura Física Educativa. Volumen 4, Seguridad Estructural, tomo VI, Diseño de estructuras de acero, México.
Instituto Nacional de la Infraestructura Física Educativa (INIFED) (2021), Evaluación post sísmica de la infraestructura física educativa de México, Volumen 1 Metodología, Instituto Nacional de la Infraestructura Física Educativa. México.
Instituto Belisario Domínguez, Senado de la República (2017), El sistema escolar ante los sismos de septiembre de 2017, México. http://bibliodigitalibd.senado.gob.mx/bitstream/handle/123456789/3764/reporte_50_221117_web%20%282%29.pdf
Instituto de Ingeniería de la UNAM, Base de datos de registros acelero gráficos de la RAII-UNAM, (2021). https://aplicaciones.iingen.unam.mx/AcelerogramasRSM/Inicio.aspx
Jaimes, M A y M Niño (2017), “Cost-benefit analysis to assess seismic mitigation options in Mexican public school buildings”, Bull Earthquake Eng. Volume 15 (9), pp 3919–3942. DOI: 10.1007/s10518-017-0119-5.
Mansor, M N A y L Ch Siang (2019), "Structural retrofitting proposal for representative school facility”, IOP Conf. Ser.: Earth Environ. Sci., 244, 012045. DOI: 10.1088/1755-1315/244/1/012045
Mlego (2021) Lego. Muebles escolares. Butacas. Recuperado el 14 de mayo de 2021, de https://mlego.com.mx
Nowak, A y K Collins (2012), Reliability of Structures. Second edition. USA: CRC Press, 2013. 391 p.
Ordaz, M y C Reyes (1999), "Earthquake hazard in Mexico City: Observations versus computations", Bulletin of the Seismological Society of America, Vol. 89, No. 5, pages 1379-1383. DOI: 10.1785/BSSA0890051379
Reinoso, E (2007), "Riesgo sísmico de la Ciudad de México". Trabajo de ingreso a la Academia de Ingeniería, México.
Sánches, C y A Islas (2017), Recuento de los daños 7S y 19S a un mes de la tragedia, Senado de la República. Recuperado de http://bibliodigitalibd.senado.gob.mx/handle/123456789/3721
Teddy, B & Associates (2010), Retrofitting simple buildings damaged by earthquakes, World Seismic Safety Initiative, United Nations. https://www.humanitarianlibrary.org/sites/default/files/2014/02/No.1_Manual_for_Rehabilitation_Teddys.pdf
Tena, A, H Hernández, E A Godínez y L E Pérez (2021) “Mexico City during and after the September 19, 2017 earthquake: Assessment of seismic resilience and ongoing recovery process”. J Civil Struct Health Monit, 11, 1275–1299. DOI: 10.1007/s13349-021-00511-x
The European Union Per Regulation (2002), “Eurocode- Basis of structural design”, pages 86-89.
Tolentino, D (2009), “Confiabilidad en edificios considerando la influencia del daño acumulado causado por sismos”, Tesis de Maestría, División de Estudios de Posgrado, Facultad de Ingeniería, UNAM.
Tolentino, D, S E Ruiz y M A Torres (2012), “Simplified closed-form expressions for the mean failure rate of structures considering structural deterioration”, Structure and Infrastructure Engineering, Vol.8, No. 5, pp. 483-496. DOI: 10.1080/15732479.2010.539067