UNA MEDIDA DE INTENSIDAD SÍSMICA BASADA EN UN PARÁMETRO PARA CARACTERIZAR LA FORMA ESPECTRAL DENOMINADO Np
DOI:
https://doi.org/10.18867/ris.86.151Resumen
En este trabajo se analizan diversas medidas de intensidad sísmica (IS) representativas de la forma espectral. En primer lugar, se introduce una nueva medida de IS vectorial basada en la pseudo-aceleración en el periodo fundamental de vibración de la estructura Sa(T1), y un parámetro que caracteriza la forma espectral denominado Np. Se compara la eficiencia del vector <Sa(T1), Np> con diversas medidas de intensidad sísmica mediante el análisis de sistemas de un grado de libertad (S1GL), marcos de concreto reforzado y acero, los cuales se someten a la acción de movimientos sísmicos con distintas características (que incluyen registros cercanos al epicentro y de banda angosta). Se demuestra que el vector propuesto tiene una mejor relación con las demandas máximas y de energía, por lo que su uso reduce las incertidumbres asociadas a la respuesta estructural, que es pieza fundamental en la selección de acelerogramas para el análisis dinámico no-lineal de estructuras, y para evaluar la confiabilidad estructural. Finalmente, se analiza una medida de intensidad sísmica escalar basada en Sa(T1) y Np, y se demuestra que el análisis del peligro sísmico para la medida escalar puede efectuarse mediante herramienta actualmente disponibleDescargas
Citas
Alavi, B y H Krawinkler (2001), “Effects of near-field ground motion on frame structures”, Report No. 138, John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, http://blume.stanford.edu/Blume/TRList.htm (accessed 5/31/2006)
Arias, A (1970), “A measure of earthquake intensity”, Seismic Design for Nuclear Power Plants, edited by R. J. Hansen, MIT Press, Cambridge, MA, pp. 438-483.
Baker, J W (2005), “Vector-valued ground motion intensity measures for probabilistic seismic demand analysis”. Ph.D. Thesis, Stanford University
Baker, J W y C A Cornell (2005), “A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon”, Earthquake Engineering and Structural Dynamics, No 34, pp. 1193-1217
.
Baker, J W y C A Cornell (2006), “Spectral shape, epsilon and record selection”, Earthquake Engineering and Structural Dynamics, No 35, pp. 1077-1095.
Baker, J W (2007), “Quantitative classification of near-fault ground motions using wavelet analysis”, Bulletin of the Seismological Society of America, Vol. 97, No 5, pp. 1486-1501.
Baker, J W y C A Cornell (2008), “Vector-valued intensity measures incorporating spectral shape for prediction of structural response”, Journal of Earthquake Engineering, Vol. 12, No 4, pp. 534-554.
Baker, J W y C A Cornell (2008), “Vector-valued intensity measures for pulse-like near-fault ground motions”, Engineering Structures, Vol. 30, No 4, pp. 1048-1057.
Bazzurro, P (1998), ”Probabilistic seismic demand analysis”, Ph.D. Thesis, Stanford University.
Bazzurro, P y C A Cornell (2002), “Vector-valued probabilistic seismic hazard analysis”, 7th U.S. National Conference on Earthquake Engineering, Earthquake Engineering Research Institute, Boston, MA, USA.
Benjamin, J R y C A Cornell (1970), “Probability, statistic, and decision for civil engineers”, McGraw-Hill, New York.
Bojórquez, E y S E Ruiz (2004), “Strength reduction factors for the valley of Mexico taking into account low cycle fatigue effects”, 13th World Conference on Earthquake Engineering, paper 516, Vancouver, Canada 2004 (CD-ROM).
Bojórquez, E, M Díaz, S E Ruiz y F García-Jarque (2007), “Confiabilidad sísmica de varios edificios (cuatro a diez niveles) localizados en suelo blando de la Ciudad de México, diseñados con el RCDF-2004”, Revista de Ingeniería Sísmica, No 76, pp. 1-27.
Bojórquez, E, S E Ruiz y A Terán-Gilmore (2008a), “Reliability-based evaluation of steel structures using energy concepts”, Engineering Structures, Vol. 30, No 6, pp. 1745-1759.
Bojórquez, E, I Iervolino y G Manfredi (2008b), “Evaluating a new proxy for spectral shape to be used as an intensity measure”, The 2008 Seismic Engineering Conference Commemorating the 1908 Messina and Reggio Calabria Earthquake (MERCEA ‘08).
Bojórquez, E, A Reyes-Salazar, A Terán-Gilmore y S E Ruiz (2010a), “Energy-based damage index for steel structures”, Journal of Steel and Composite Structures, Vol. 10, No 4, pp. 343-360
Bojórquez, E, A Reyes-Salazar, H E Rodriguez, J L Vazquez-Dimas y I Iervolino (2010b), “Evaluation of seismic fragility of steel frames using vector-valued IM”, 14th European Conference on Earthquake Engineering, Ohrid, Macedonia.
Bojórquez, E y I Iervolino (2011), “Spectral shape proxies and nonlinear structural response”, Soil Dynamics and Earthquake Engineering, Vol. 31, pp. 996-1008.
Bojórquez, E, A Terán-Gilmore, S E Ruiz y A Reyes (2011), “Evaluation of structural reliability of steel frames: interstory drifts versus plastic hysteretic energy”, Earthquake Spectra, Vol. 27, No 3, pp. 661-682.
Boore, D M y G M Atkinson (2007), “Boore-Atkinson NGA ground motions relations for the geometric mean horizontal component of peak and spectral ground motion parameter”, Pacific Earthquake Engineering Research Center, University of California, Berkeley, PEER Report.
Cordova, P P, G G Dierlein, S S F Mehanny y C A Cornell (2001), “Development of a two parameter seismic intensity measure and probabilistic assessment procedure”, The second U.S.-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforce Concrete Building Structures, Sapporo, Hokkaido, pp. 187-206.
Cosenza, E, G Manfredi y R Ramasco (1993), “The use of damage functionals in earthquake engineering: a comparison between different methods”, Earthquake Engineering and Structural Dynamics, Vol. 22, pp. 855-868.
Cosenza, E y G Manfredi (1997), “The improvement of the seismic-resistant design for existing and new structures using damage criteria”, Seismic Design Methodologies for the Next Generation of Codes, Fajfar P, Krawinkler H (eds). Balkema, Rotterdam, pp. 119-130.
Fajfar, P y H Krawinkler (1997), “Conclusions and recommendations, in: Seismic design methodologies for the next generation of codes”, Balkema, Rotterdam
Fu, Q (2005), “Modeling and prediction of fault-normal near-field ground motions and structural response”, Ph.D. Dissertation, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA.
Housner, G W (1952), “Spectrum intensities of strong motion earthquakes”, Proceedings, Symposium on Earthquake and Blast Effects on Structures, Earthquake Engineering Research Institute.
Iervolino, I y C A Cornell (2005), “Records selection for nonlinear seismic analysis of structures”, Earthquake Spectra, Vol. 21, No 3, pp. 685-713.
Iervolino, I, G Manfredi y E Cosenza (2006), “Ground motion duration effects on nonlinear seismic response”, Earthquake Engineering and Structural Dynamics, Vol. 35, pp. 21-38.
Iervolino, I y C A Cornell (2008), “Prediction of the occurrence of velocity pulses in near-source ground motions”, Bulletin of the Seismological Society of America, Vol. 98, No 5, pp. 2262-2277.
Inoue, T y C A Cornell (1990), “Seismic hazard analysis of multi-degree-of-freedom structures”, Reliability of marine structures, RMS-8, Stanford, CA.
Luco, N (2002), “Probabilistic seismic demand analysis, SMRF connection fractures, and near-source effects”, Ph.D. Thesis, Stanford University.
Manfredi, G (2001), “Evaluation of seismic energy demand”, Earthquake Engineering and Structural Dynamics, Vol. 30, pp. 485-499
Mavroeidis, G P, G Dong y A S Papageorgiou (2004), “Near-fault ground motions, and the response of elastic and inelastic single-degree-of-freedom (SDOF) systems”, Earthquake Engineering and Structural Dynamics, Vol. 33, No 9, pp. 1023–1049.
Miranda, E. (1993), “Site-dependent strength reduction factors”, Journal of Structural Engineering, Vol. 119, No 12, pp. 3503-3519.
Park, Y J y A H Ang (1985), “Mechanistic seismic damage model for reinforced concrete”, Journal of Structural Engineering ASCE, No 111(ST4), pp. 740-757.
Ruiz-García, J y E Miranda (2004), “Inelastic displacement ratios for design of structures on soft soils sites”, Journal of Structural Engineering ASCE, Vol. 130, No 12, pp. 2051-2061.
Saiidi, M y M Sozen (1979), “Simple and complex models for nonlinear seismic response of reinforced concrete structures”, Report UILU-ENG-79-2031, Department of Civil Engineering, University of Illinois, Urbana, Illinois.
Shome, N (1999), “Probabilistic seismic demand analysis of nonlinear structures”, Ph.D. Thesis, Stanford University.
Stewart, J P, S J Chiou, J D Bray, R W Graves, P G Somerville y N A Abrahamson (2002), “Ground motion evaluation procedures for performance-based design”, Soil Dynamics and Earthquake Engineering; No 22, pp. 765–772.
Terán-Gilmore, A (2001), “Consideraciones del uso de la energía plástica en el diseño sísmico”, Revista de ingeniería Sísmica, SMIS, Vol. 65, pp. 81-110.
Terán-Gilmore, A y J O Jirsa (2007), “Energy demands for seismic design against low cycle fatigue”, Earthquake Engineering and Structural Dynamics, Vol. 36, pp. 383-404
Tothong, P y N Luco (2007), “Probabilistic seismic demand analysis using advanced ground motion intensity measures”, Earthquake Engineering and Structural Dynamics, Vol. 36, pp. 1837-1860.
Tothong, P (2007), “Probabilistic seismic demand analysis using advanced ground motion intensity measures, attenuation relationships, and near source effects”, Ph.D. Thesis, Stanford University.
Vamvatsikos, D y C A Cornell (2002), “Incremental dynamic analysis”, Earthquake Engineering and Structural Dynamics, Vol. 31, pp. 491-514.
Von-Thun, J L, L H Rochin, G A Scott y J A Wilson (1988), “Earthquake ground motions for design and analysis of dams, in: Earthquake Engineering and Soil Dynamics II – Recent Advance in Ground-Motion Evaluation”, Geotechnical Special Publication 20 ASCE, New York, pp. 463-481