UNA MEDIDA DE INTENSIDAD SÍSMICA QUE PREDICE EL COMPORTAMIENTO NO LINEAL Y EL EFECTO DE LOS MODOS SUPERIORES

Autores/as

  • Edén Bojórquez Mora Universidad Autónoma de Sinaloa
  • Robespierre Chávez López Estudiante, Universidad Autónoma de Sinaloa
  • Sonia E. Ruiz Gómez Instituto de Ingeniería, UNAM
  • Alfredo Reyes Salazar Universidad Autónoma de Sinaloa

DOI:

https://doi.org/10.18867/ris.90.12

Resumen

El objetivo de este trabajo es analizar la eficiencia de una medida de intensidad sísmica (IS) capaz de predecir tanto el comportamiento no lineal como el efecto de los modos superiores de estructuras sometidas a sismos de diversas características. La medida definida como intensidad de Bojórquez está inspirada en un parámetro para caracterizar la forma espectral denominado Np. Aunque normalmente la forma espectral más utiliza es en términos de la pseudo-aceleración, en este trabajo con la finalidad de mejorar la eficiencia de la medida de intensidad, se utilizan otros parámetros tales como velocidad y desplazamiento. La eficiencia de la medida de intensidad sísmica aquí presentada se obtiene al someter varias edificaciones de acero a movimientos sísmicos registrados en suelos con distintas características. Se concluye que el parámetro analizado muestra buena relación con la respuesta estructural y es más eficiente que otras medidas de intensidad sísmica usadas frecuentemente.   

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alcántara, L, E Ovando y M A Macías (2009), “Estimación de espectros de respuesta en la ciudad de puebla utilizando redes neuronales artificiales,” XVI Congreso Nacional de Ingeniería Sísmica, Puebla, México.

Aptikaev, F F (1982), “On the correlations of MM intensity with parameters of ground shaking”, 7th European Conference on Earthquake Engineering, Atenas, Grecia.

Araya, R y G R Saragoni (1980), “Capacidad de los movimientos sísmicos de producir daño estructural”, Reporte SES I 7/80, División de Ingeniería Estructural, Departamento de Ingeniería, Universidad de Chile, Santiago, Chile.

Arias, A (1970), “A measure of earthquake intensity”, in Seismic Design for Nuclear Power Plants, editado por R. J. Hansen, Massachusetts Institute of Technology Press, pp. 438-483.

Baker, J W y C A Cornell (2004), “Choice of a vector ground motion intensity measures for Seismic Demand Hazard Analysis”, 13th World Conference on Earthquake Engineering. Agosto 1-6, Vancouver, Canada.

Baker, J W y C A Cornell. (2005), “A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon”, Earthquake Engineering & Structural Dynamics, vol. 34, pp. 1193 - 1217.

Baker, J W y C A Cornell (2006), “Spectral shape, epsilon and record selection”, Earthquake Engineering & Structural Dynamics, vol. 35, pp. 1077-1095.

Bazzurro, P y C A Cornell (2002), “Vector-valued probabilistic seismic hazard analysis (VPSHA)”, Proceedings of the Seventh U.S. National Conference on Earthquake Engineering, Boston, MA.

Bojórquez, E, I Iervolino y G Manfredi (2008), “Evaluating a new proxy for spectral shape to be used as an intensity measure”, Seismic Engineering Conference, AIP Conference Proceedings, vol. 1020, pp. 1599-1606.

Bojórquez, E y I Iervolino (2011), “Spectral shape proxies and nonlinear structural response”, Soil Dynamics and Earthquake Engineering, vol. 31, pp 996-1008.

Bojórquez, E, I Iervolino y A Reyes-Salazar (2011). “Which spectral shape really matter to predict nonlinear structural response: application to steel frames”, Paper 05-175, 8th International Conference on Urban Earthquake Engineering (CUEE), Tokio Japan.

Bojórquez, E, I Iervolino, A Reyes-Salazar y S E Ruiz (2012a), “Comparing vector-valued intensity measures for fragility analysis of steel frames in the case of narrow-band ground motions”, Engineering Structures, vol. 45, pp. 472–480.

Bojórquez, E, J Bojórquez, S E Ruiz y A Reyes-Salazar (2012b). “Prediction of inelastic response spectra using artificial neural networks”. Mathematical Problems in Engineering, vol. 2012.

Bojórquez, E (2014), "A new generalized ground motion intensity measure part I: mathematical formulation", en preparación.

Bojórquez, E, R Chavez, S E Ruiz y A Reyes-Salazar (2014)," A new generalized ground motion intensity measure part II: application", en preparación.

Buratti, N (2011), "Confronto tra le performance di diverse misure di intensità dello scuotimento sísmico", Congreso Nacional de Ingeniería de Italia, ANIDIS, Bari Italia.

Buratti, N (2012), "A comparison of the performances of various ground–motion intensity measures", The 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24-28 September.

Carr, A (2008), “RUAUMOKO inelastic dynamic analysis program”, Departament of Civil Engineering, University of Cantenbury, Nueva Zelanda.

Cordova, P P, G G Dierlein, S S F Mehanny y C A Cornell (2001), “Development of a two parameter seismic intensity measure and probabilistic assessment procedure”, The second U.S.-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforce Concrete Building Structures, Sapporo, Hokkaido 2001, pp. 187-206.

FEMA (1994), “NEHRP Recommended provisions for the development of seismic regulations for new buildings”.

Housner, G W (1952), “Spectrum intensities of strong motion earthquakes”, Proceedings, Symposium on Earthquake and Blast Effects on Structures, Earthquake Engineering Research Institute.

Housner, G W (1970), “Strong ground motion”, In Earthquake Engineering, editado por R. L. Wiegel, Prentice-Hall Inc.

Housner, G W (1975), “Measures of severity of ground shaking”, U.S. Conference on Earthquake Engineering. Earthquake Engineering Research Institute.

Housner, G W y P C Jennings (1964), “Generation of artificial earthquakes”, Journal of the Engineering Mechanics Division, vol. 90, Proceedings paper 3806.

Iervolino, I y C A Cornell (2005), “Records selection for nonlinear seismic analysis of structures”, Earthquake Spectra, vol. 21, pp. 685-713.

Kurama, Y C y K T Farrow (2003), “Ground motion scaling methods for different site conditions and structure characteristics”, Earthquake Engineering and Structural Dynamics, vol. 32, pp. 2425-2450.

Luco, N (2002), “Probabilistic seismic demand analysis, SMRF connection fractures, and near-source effects”, Ph.D. Thesis, Stanford University.

Mehanny, S S F (2009), “A broad-range power-law form scalar-based seismic intensity measure”, Engineering Structures, vol. 31, pp. 1354-1368.

Mehanny, S S F y G G Deierlein (2000), “Modelling of assessment of seismic performance of composite frames with reinforced concrete columns and steel beams”. Report 135, Department of Civil and Enviromental Engineering, Stanford University, Sanford.

Modica, A y P Stafford (2014), “Vector fragility surfaces for reinforced concrete frames in Europe”, Bulletin of Earthquake Engineering, 2014.

Park, Y J, A H S Ang y Y K Wen (1985), “Seismic damage analysis of reinforced concrete buildings”, Journal of Structural Engineering, vol. 111, pp. 740-757.

RCDF (2004), “Reglamento de Construcciones del Distrito Federal”.

Riddell, R y J E Garcia (2001), “Hysteretic energy spectrum and damage control”, Earthquake Engineering & Structural Dynamics, vol. 30, pp. 1791-1816.

Sarma, S K y K S Yang (1987), “An evaluation of strong motion records and a new parameter A95”, Earthquake Engineering and Structural Dynamics, vol. 15, pp. 119-132.

Shome, N, C A Cornell, P Bazzurro y J E Carballo (1998), “Earthquakes, records, and nonlinear responses”, Earthquake Spectra, vol. 14(3), pp. 469 - 500.

Shome, N (1999), “Probabilistic seismic demand analysis of nonlinear structures”, Ph.D. Thesis, dissertation, Department of Civil and Environmental Engineering, Stanford University.

Terán-Gilmore, A y O Jirsa (2007), “Energy demands for seismic design against low cycle fatigue”, Earthquake Engineering and Structural Dynamics, vol. 36, pp. 383-404.

Tothong, P y N Luco (2007), “Probabilistic seismic demand analysis using advanced ground motion intensity measures”, Earthquake Engineering and Structural Dynamics, vol. 36, pp. 1837-1860.

Vamvatsikos, D y C A Cornell (2002), “Incremental dynamic analysis”, Earthquake Engineering and Structural Dynamics, vol. 31, pp. 491-514.

Von-Thun, J L, L H Rochin, G A Scott y J A Wilson (1988), “Earthquake ground motions for design and analysis of dams, in: Earthquake Engineering and Soil Dynamics II – Recent Advance in Ground-Motion Evaluation”, Geotechnical Special Publication 20 ASCE, New York, pp. 463-481.

Descargas

Publicado

2014-06-30

Cómo citar

Bojórquez Mora, E., Chávez López, R., Ruiz Gómez, S. E., & Reyes Salazar, A. (2014). UNA MEDIDA DE INTENSIDAD SÍSMICA QUE PREDICE EL COMPORTAMIENTO NO LINEAL Y EL EFECTO DE LOS MODOS SUPERIORES. Revista Ingeniería Sísmica , (90), 1–33. https://doi.org/10.18867/ris.90.12

Número

Sección

Artículos

Métrica

Artículos más leídos del mismo autor/a

1 2 3 > >>