FACTORES DE CARGA ÓPTIMOS PARA EL DISEÑO SÍSMICO DE EDIFICIOS
DOI:
https://doi.org/10.18867/ris.98.505Resumen
En el presente trabajo se revisan las combinaciones de carga para el diseño de edificaciones que se establecen en el Reglamento de Construcciones del Distrito Federal (RCDF-2004) y sus Normas Técnicas Complementarias (NTC-2004). Se proponen nuevos factores de carga para que se especifiquen en la próxima versión del (RCDF). Se revisa la combinación de carga gravitacional (carga muerta más carga viva) y la combinación de carga por sismo (carga muerta, carga viva y carga por sismo). Se propone una metodología para establecer factores y combinaciones óptimos de carga que garanticen el mínimo costo total esperado durante la vida útil de la estructura y que la probabilidad de falla sea al menos igual a la implícita en el RCDF-2004. Para la estimación de la confiabilidad estructural se hace uso de las Redes Neuronales Artificiales.
Descargas
Citas
Aktas, E, F Moses y M Ghosn (2001), “Cost and safety optimization of structural design specifications”, Reliability Engineering and System Safety, Vol. 73, No. 3, pp. 205-212. https://www.sciencedirect.com/science/article/pii/S0951832001000461
American Society of Civil Engineers. (2010), “Minimum design loads for buildings and others structures”, American Society of Civil Engineers, ASCE, Reston, VA. https://ascelibrary.org/doi/book/10.1061/9780784412916
Ang, A H-S (2011), “Life-cycle considerations in risk-informed decisions for design of civil infrastructures”, Structure and Infrastructure Engineering, Vol. 7, No. 1-2, pp. 3-9. http://dx.doi.org/10.1080/15732471003588239
Barone, G y D M Frangopol (2015), “Life-cycle maintenance of deteriorating structures by multi-objective optimization involving reliability, risk, availability, hazard and cost”, Structural Safety, Vol. 48, pp. 40-50. http://dx.doi.org/10.1016/j.strusafe.2014.02.002
Base de Datos de Sismos Mexicanos, SMIS (2015), “Sociedad Mexicana de Ingeniería Sísmica”, A. C.
Bojórquez, E, R Chávez, A Reyes-Salazar, S E Ruiz y J Bojórquez (2017) “A new ground motion intensity measure IB”. Soil Dynamics and Earthquake Engineering, Vol. 99, pp. 97-107. https://doi.org/10.1016/j.soildyn.2017.05.011
Bojórquez, J, D Tolentino, J Yunes y S E Ruiz (2014), “Diseño de edificios de concreto reforzado utilizando redes neuronales artificiales”, XIX Congreso Nacional de Ingeniería Estructural, Puerto Vallarta, Jalisco.
Bojórquez, J, S E Ruiz, D Tolentino y E Bojórquez (2015), “Diseño de edificios de concreto reforzado utilizando RNA”, Concreto y Cemento: Investigación y Desarrollo, editada por el IMCyC, Vol 7, No. 2, pp. 60-78.
Bojórquez, J, S E Ruiz, E Bojórquez y A Reyes-Salazar (2016), “Probabilistic seismic response transformation factors between SDOF and MDOF systems using artificial neural networks” Journal of Vibroengineering, Vol. 18, No. 4, pp. 2248-2262. DOI: 10.21595/jve.2016.16506
Bojórquez, J, S E Ruiz, B Ellingwood, A Reyes-Salazar y E Bojórquez (2017), “Reliability-based optimal load factors for seismic design of buildings”, Engineering and Structures, No. 151. pp. 527-539. https://doi.org/10.1016/j.engstruct.2017.08.046
Carr, A (2008), “RUAUMOKO inelastic dynamic analysis program”, Department of Civil Engineering, University of Canterbury, Christchurch, Nueva Zelanda.
Chan, S, S E Ruiz y M Montiel (2005), “Escalamiento de acelerogramas y mínimo número de registros requeridos para el análisis de estructuras”, Revista de Ingeniería Sísmica, No. 7, pp. 1-24.
Cornell, C A (1968), “Engineering seismic hazard analysis”, Bulletin of the Seismological Society of America, Vol. 58, No.5, pp. 1583-1606.
Cornell, C A, F Jalayer, R O Hamburger y D A Foutch (2002), “The probabilistic basis for the 2000 SAC/FEMA steel moment frame guidelines”, Journal of Structural Engineering, No. 128, pp. 526–533.
De León, D (1991), “Integrating socio-economics in the development of criteria for optimal Aseismic design of R/C buildings”, Tesis de Doctorado, Universidad de California.
De León, D, y Ang A H-S (1995), “A damage model for reinforced concrete buildings. Futher study with the Mexico city earthquake”, Structural Safety and Reliability, Balkema Rotterdam, pp. 2081-2087.
Ellingwood, B R (1994a), “Probability-based codified design for earthquakes”, Engineering Structures, Vol. 6, No. 7, pp. 498-506. http://dx.doi.org/10.1016/0141-0296(94)90086-8
Ellingwood, B R (1994b), “Probability-based codified design: past accomplishments and future challenges”, Structural Safety, Vol. 13, No. 3, pp. 159-176. http://dx.doi.org/10.1016/0167-4730(94)90024-8
Esteva, L (1968), “Bases para la formulación de decisiones de diseño sísmico”, Tesis de Doctorado, Facultad de Ingeniería, UNAM, México.
Esteva, L, D Campos y O Díaz-López (2011), “Life-cycle optimization in Earthquake Engineering”, Structure and Infrastructure Engineering, Vol. 7, pp. 33-49. http://dx.doi.org/10.1080/15732471003588270
Gaceta Oficial del Distrito Federal (2004), “Normas Técnicas Complementarias para Diseño por Sismo”, México, DF.
Gayton, N, A Mohamed, J D Sorensen, M Pendola y M Lemaire (2004), “Calibration mathods for reliability-based design codes”, Structural Safety, Vol. 26, No. 1, pp. 91-121. http://dx.doi.org/10.1016/S0167-4730(03)00024-9
Granados, R (2015), “Comunicación personal”, México D.F.
INEGI (2015), “Instituto Nacional de Estadística y Geografía”, www.inegi.org.mx/
Informe del Instituto de Ingeniería, UNAM (1985), “Efectos de los sismos de septiembre de 1985 en las construcciones de la Ciudad de México”, México.
Lagaros, N D (2007), “Life-cycle cost analysis of design practices for RC framed structures”, Bulletin of Earthquake Engineering, Vol. 5, pp. 425–442. https://link.springer.com/article/10.1007/s10518-007-9038-1
Mitropoulou, C Ch, N D Lagaros y M Papadrakakis (2011), “Life-cycle cost assessment of optimally designed reinforced concrete buildings under seismic actions”, Reliability Engineering and System Safety, Vol. 96, No. 10, pp. 1311-1331.
https://doi.org/10.1016/j.ress.2011.04.002
Montiel, M A y S E Ruiz (2007), “Influence of structural capacity uncertainty on seismic reliability of building structures under narrow-band motions”, Earthquake Engineering and Structural Dynamics, Vol. 36, pp. 1915-1934. https://doi.org/10.1002/eqe.711
Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto (2004), “Gaceta Oficial del Distrito Federal”, 6 de octubre, México, D F, México.
Normas Técnicas Complementarias sobre Criterios y Acciones para el Diseño de Edificaciones. NTCCA. (2004), “Administración Pública del Distrito Federal”, Jefatura de Gobierno, México, D.F.
Otani, S (1974), “SAKE-A computer program for inelastic response of R/C frames to earthquakes”, Structural Research Series, University of Illinois, Urbana, No. 413.
Reglamento de Construcciones para el Distrito Federal, RCDF. (2004), “Administración Pública del Distrito Federal”, Jefatura de Gobierno, México, D.F.
Rubinstein, R Y (1981), “Simulation and the Monte Carlo Method”, John Wiley and Sons, pp. 372.
Shome, N y A C Cornell (1999), “Probabilistic seismic hazard demand analysis of nonlinear structures”, Reliability of Marine Structures Programs, Report No. RMS-35, Dept. of civil Eng., Stanford University, Stanford, CA.
Sorensen, J D, I B Kroon y M H Faber (1994), “Optimal reliability-based code calibration”, Structural Safety, Vol. 15, No. 3, pp. 197-208. http://dx.doi.org/10.1016/0167-4730(94)90040-X
Surahman, A y K B Rojaniani (1983), “Reliability based optimum design of concrete frames”, Journal of the Structural Division, ASCE, Vol. 109, No. 3, pp. 71-76.
Tokyo Metropolitan Government, (1985), “Report in the investigation of the earthquake in Mexico”, junio de 1985.
Tolentino, D y S E Ruiz SE (2013), “Time intervals for maintenance of offshore structures based on multiobjective optimization”, Mathematical Problems is Engineering, Vol. 2013; No. 125856. http://dx.doi.org/10.1155/2013/125856
Vamvatsikos, D y C A Cornell (2002), “The incremental dynamic analysis and its application to performance-based earthquake engineering”, Proceedings of the 12th European Conference on Earthquake Engineering, Paper 479, Londres, UK. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.456.3199
Velázquez, I, J Bojórquez, S E Ruiz y F García-Jarque (2015), “Costos iniciales de edificios de C/R en la zona IIIb considerando distintas combinaciones de factores de carga”, XX Congreso Nacional de Ingeniería Sísmica, Acapulco, Gro.
Wang, J, D Huang, S Chang y Y Wu (2014), “New evidence and perspective to the poisson process and earthquake temporal distribution from 55,000 events around taiwan since 1900”, Natural Hazards Review, ASCE, Vol. 15, No. 1, pp. 38–47. https://ascelibrary.org/doi/10.1061/%28ASCE%29NH.1527-6996.0000110
Wen, Y K (2001), “Reliability and performance-based design”, Structural Safety, Vol. 23, No. 4, pp. 407-428. http://dx.doi.org/10.1016/S0167-4730(02)00011-5
Wen, Y K y Y J Kang (2001a), “Minimum building life-cycle cost design Criteria. I: Methodology”, Journal of Structural Engineering, ASCE, Vol. 127, No. 3, pp. 330-337.
Wen, Y K y Y J Kang (2001b), “Minimum building life-cycle cost design Criteria. II. Applications”, Journal of Structural Engineering, ASCE, Vol. 127, No. 3, pp. 338-346.