INFLUENCE OF SHEAR WALL CONFIGURATION ON SEISMIC FRAGILITY OF BUILDINGS WITH DUAL REINFORCED CONCRETE SYSTEM

Authors

  • Fernando de Jesus Velarde Cruz Universidad Autónoma de Sinaloa
  • Juan Bojórquez Universidad Autónoma de Sinaloa
  • Edén Bojórquez Universidad Autónoma de Sinaloa
  • Henry Reyes Universidad de Sonora
  • Robespierre Chávez Universidad Autónoma de Sinaloa
  • Mario D Llanes Universidad Autónoma de Sinaloa
  • Federico Valenzuela Universidad Autónoma de Sinaloa
  • Víctor Baca Universidad Autónoma de Sinaloa
  • Juan Acosta Universidad Autónoma de Sinaloa

DOI:

https://doi.org/10.18867/ris.114.671

Keywords:

seismic fragility, shear walls, dual system, incremental dynamic analysis

Abstract

Shear walls, integrated into conventional reinforced concrete moment-resisting frame systems, have proven to be effective seismic protection elements by enhancing lateral stability and reducing the structural fragility of buildings. However, the impact of different configurations on seismic response has been insufficiently explored using advanced three-dimensional models. This study adopts a probabilistic approach to analyze the seismic fragility of five eight-story buildings with variations in the in-plane distribution of shear walls using 3D models. To achieve the objectives of this work, the structural capacity of the buildings was first assessed through Incremental Dynamic Analysis (IDA). Seismic analyses considered representative ground motion records from the soft soils of Mexico City, which were scaled to different intensity levels. Subsequently, fragility curves were developed for all the buildings, taking into account the varying in-plane configurations of the shear walls. The results reveal that a symmetrical arrangement of shear walls along the building's exterior significantly reduces seismic fragility by minimizing torsional effects, particularly in exterior columns. Conversely, placing shear walls at the center of the building, a common practice for accommodating elevators or utility installations, proves less efficient structurally, requiring larger frame sections to achieve comparable fragility levels. Consequently, strategic planning in the design of dual systems is crucial to optimizing seismic performance.

Downloads

Download data is not yet available.

References

Ahkam Dwi, N. l., Teguh, M., y Saleh, F. (2022). Seismic behavior of structural models of dual system building and flat slab-drop panel strengthened with shear-wall. AIP Conference Procedings, 2489(1). https://doi.org/10.1063/5.0094416

Bhandari, M., Bharti, S. D., Shrimali, M. K., y Datta, T. K. (2019). Seismic Fragility Analysis of Base-Isolated Building Frames Excited by Near- and Far-Field Earthquakes. Journal of Performance of Constructed Facilities, 33(3), 04019029. https://doi.org/10.1061/(asce)cf.1943-5509.0001298

Bojórquez E., Terán-Gilmore A, Ruiz SE, Reyes-Salazar A. (2011). Evaluation of Structural Reliability of Steel Frames: Interstory Drift versus Plastic Hysteretic Energy. Earthquake Spectra, 27, 661-682. https://doi.org/10.1193/1.3609856

Chen , Y., Dong, Y.-R., Bai, G.-L., y Wang, Y.-Y. (2021). IDA-based seismic fragility of high-rise frame-core tube structure subjected to multi-dimensional long-period ground motions. Journal of Building Engineering, 43(102917). https://doi.org/10.1016/j.jobe.2021.102917

Chopra, A. K. (2015). Dynamics of structures. Global Edition. Pearson Higher Ed.

De Anda, J., Ruiz, S. E., Bojórquez Mora, E., Salbitano, G., Silva-González, F. L., y Bojórquez Mora, J. (2024). Análisis de la influencia del daño acumulado en la fragilidad estructural de torres de aerogeneradores de mediana altura. Revista Ingeniería y Tecnología UAS, 7, 6-20. https://revistas.uas.edu.mx/index.php/RITUAS/article/view/946

Elhegazy , H., Ebid, A. M., Mahdi , I. M., Haggag, S. A., y Rashid, I. A. (2020). Selecting optimum structural system for R.C. multi-story buildings considering direct cost. Structures, 24, 296-303. https://doi.org/10.1016/j.istruc.2020.01.039

FEMA-356. (2000). Prestandard and commentary for the seismic rehabilitation of buildings. Washington DC, USA: Federal Emergency Management Agency.

Filippou, F. C., Popov, E. P., y Bertero, V. V. (1983). Effects of bond deterioration on hysteretic behavior of reinforced concrete joints. Earthquake Engineering Research Center, 137-147. https://nehrpsearch.nist.gov/article/PB84-192020/XAB

Gwalani, P., Singh, Y., y Varum, H. (2020). SEISMIC PERFORMANCE OF RC DUAL SYSTEM BUILDINGS FOR INDIAN CODE. The 17th World Conference on Earthquake Engineering. Senadi, Japan. https://wcee.nicee.org/wcee/article/17WCEE/2b-0008.pdf

Ismael, S. S., y Ahmed, F. R. (2023). Seismic Fragility Curves for Reinforced Concrete Dual System Buildings. ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 11(1), 149-156. https://doi.org/https://doi.org/10.14500/aro.11172

Kolozvari, K., Kalbasi, K., Orackal, K., y Wallace, J. (2021). Three-dimensional shear-flexure interaction model for analysis of non-planar reinforced concrete walls. Journal of Building Engineering, 44. https://doi.org/10.1016/j.jobe.2021.102946

Kolozvari, K., Orakcal, K., y Wallace, J. W. (2015). Shear-Flexure Interaction Modeling of reinforced Concrete Structural Walls and Columns under Reversed Cyclic Loading. University of California, Berkeley: Pacific Earthquake Engineering Research Center. https://apps.peer.berkeley.edu/publications/peer_reports/reports_2015/webPEER-2015-12-kolozvari.pdf

Kostic, S. M., Filippou, F. C., y Lee, C.-L. (2011). An efficient beam-column element for nonlinear 3D frame analysis. Corfu, Greece: In ECCOMAS Thematic Conference-COMPDYN. http://congress.cimne.com/eccomas/proceedings/compdyn2011/compdyn2011_full/238.pdf

MccKenna, F., Fenves, G., Filippou, F., Mazzoni, S., Scott, M., Elgamal, A., y McKenzie, P. (2010). OpenSees. University of California, Berkeley. https://opensees.berkeley.edu/

Mibang, D., y Choudhury, S. (2021). Effect of damage limit states on the seismic fragility of reinforced concrete frame-shear wall buildings. Disaster Advances, 14(9), 57-68. https://doi.org/10.25303/149da5768

Mibang, D., y Choundhury, S. (2021). Performance-Based Design of RC Dual. https://doi.org/10.1007/978-981-15-4577-1_27

Mohammad Eisa, H., y Mohammad Eisa, H. (2020). The necessity of transverse steel reinforcement for confinement in structural reinforced concrete walls using nonlinear static and dynamic analysis method. Facta universitatis-series: Architecture and Civil Engineering, 18(2), 161-175. https://doi.org/10.2298/FUACE200817012M

Mohd Yassin, M. H. (1994). Nonlinear analysis of prestressed concrete structures under monotonic and cyclic loads. Berkeley: University of California. https://www.elibrary.ru/item.asp?id=5691682

NTC-DCEC-23. (2023). Normas Técnicas Complementarias para el Diseño y Construcción de Estructuras de Concreto. Gaceta Oficial de la Ciudad de México. https://smie.com.mx/smie-2022/informacion-tecnica/normas-tecnicas-complementarias.php

NTC-DS-23. (2023). Normas Técnicas Complementarias sobre Diseño por Sismo. Gaceta Oficial de la Ciudad de México. https://smie.com.mx/smie-2022/informacion-tecnica/normas-tecnicas-complementarias.php

Phadnis, P. P. (2021). Fragility Analysis for frame with RC and steel-composite shear wall. Resilient Infrastructure, 202, 143-159. https://doi.org/10.1007/978-981-16-6978-1_11

Pitilakis, D., y Petridis, C. (2022). Fragility curves for existing reinforced concrete buildings, including soil–structure interaction and site amplification effects. Engineering Structures, 269, 114733. https://doi.org/10.1016/j.engstruct.2022.114733

Ruiz Gómez, S. E., Jiménez Jordán, R., Santos Santiago, M. A., y Orellana Ojeda, M. A. (2020). Evaluación de la fragilidad de dos soluciones de rehabilitación para un edificio con planta baja débil dañado durante el sismo 19/s17. Ingeniería sísmica(102), 1-25. https://doi.org/10.18867/ris.102.513

Shome, N., y Cornell, C. A. (1999). Probabilistic seismic demand analysis of nonlinear structures. https://dl.acm.org/citation.cfm?id=928965

Shome, N., y Cornell, C. A. (1999). Probabilistic seismic demand analysis of nonlinear structures. https://dl.acm.org/citation.cfm?id=928965

Sthapit, N., Shrestha, R. K., y Paudel, S. (2023). Seismic Response Analysis of High-Rise Reinforced Concrete Buildings Using Outrigger System. Journal of The Institution of Engineers, 104(4), 943-952. https://doi.org/10.1007/s40030-023-00758-1

Vamvatsikos, D., y Cornell, C. A. (2001). Incremental dynamic analysis. Earthquake engineering & structural dynamics, 31(3), 491-514. https://doi.org/10.1002/eqe.141

Wiyono, D. R., Milyardi, R., y Lesmana, C. (2020). Distribution of Story Shear and Reinforcement in Dual System. In IOP Conference Series: Materials Science and Engineering, 852(1), 012061. https://doi.org/10.1088/1757-899X/852/1/012061

Wong, K. K., y Harris, J. L. (2012). Seismic damage and fragility analysis of structures with tuned mass dampers based on plastic energy. The Structural Design of Tall and Special Buildings, 21(4), 296-310. https://doi.org/10.1002/tal.604

Published

2025-02-28

How to Cite

Velarde Cruz, F. de J., Bojórquez, J., Bojórquez, E., Reyes, H., Chávez , R., Llanes , M. D., … Acosta, J. A. (2025). INFLUENCE OF SHEAR WALL CONFIGURATION ON SEISMIC FRAGILITY OF BUILDINGS WITH DUAL REINFORCED CONCRETE SYSTEM. Journal Earthquake Engineering, (114), 1–14. https://doi.org/10.18867/ris.114.671

Issue

Section

Artículos

Metrics

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.