INFLUENCE OF SHEAR WALL CONFIGURATION ON SEISMIC FRAGILITY OF BUILDINGS WITH DUAL REINFORCED CONCRETE SYSTEM
DOI:
https://doi.org/10.18867/ris.114.671Keywords:
seismic fragility, shear walls, dual system, incremental dynamic analysisAbstract
Shear walls, integrated into conventional reinforced concrete moment-resisting frame systems, have proven to be effective seismic protection elements by enhancing lateral stability and reducing the structural fragility of buildings. However, the impact of different configurations on seismic response has been insufficiently explored using advanced three-dimensional models. This study adopts a probabilistic approach to analyze the seismic fragility of five eight-story buildings with variations in the in-plane distribution of shear walls using 3D models. To achieve the objectives of this work, the structural capacity of the buildings was first assessed through Incremental Dynamic Analysis (IDA). Seismic analyses considered representative ground motion records from the soft soils of Mexico City, which were scaled to different intensity levels. Subsequently, fragility curves were developed for all the buildings, taking into account the varying in-plane configurations of the shear walls. The results reveal that a symmetrical arrangement of shear walls along the building's exterior significantly reduces seismic fragility by minimizing torsional effects, particularly in exterior columns. Conversely, placing shear walls at the center of the building, a common practice for accommodating elevators or utility installations, proves less efficient structurally, requiring larger frame sections to achieve comparable fragility levels. Consequently, strategic planning in the design of dual systems is crucial to optimizing seismic performance.
Downloads
References
Ahkam Dwi, N. l., Teguh, M., y Saleh, F. (2022). Seismic behavior of structural models of dual system building and flat slab-drop panel strengthened with shear-wall. AIP Conference Procedings, 2489(1). https://doi.org/10.1063/5.0094416
Bhandari, M., Bharti, S. D., Shrimali, M. K., y Datta, T. K. (2019). Seismic Fragility Analysis of Base-Isolated Building Frames Excited by Near- and Far-Field Earthquakes. Journal of Performance of Constructed Facilities, 33(3), 04019029. https://doi.org/10.1061/(asce)cf.1943-5509.0001298
Bojórquez E., Terán-Gilmore A, Ruiz SE, Reyes-Salazar A. (2011). Evaluation of Structural Reliability of Steel Frames: Interstory Drift versus Plastic Hysteretic Energy. Earthquake Spectra, 27, 661-682. https://doi.org/10.1193/1.3609856
Chen , Y., Dong, Y.-R., Bai, G.-L., y Wang, Y.-Y. (2021). IDA-based seismic fragility of high-rise frame-core tube structure subjected to multi-dimensional long-period ground motions. Journal of Building Engineering, 43(102917). https://doi.org/10.1016/j.jobe.2021.102917
Chopra, A. K. (2015). Dynamics of structures. Global Edition. Pearson Higher Ed.
De Anda, J., Ruiz, S. E., Bojórquez Mora, E., Salbitano, G., Silva-González, F. L., y Bojórquez Mora, J. (2024). Análisis de la influencia del daño acumulado en la fragilidad estructural de torres de aerogeneradores de mediana altura. Revista Ingeniería y Tecnología UAS, 7, 6-20. https://revistas.uas.edu.mx/index.php/RITUAS/article/view/946
Elhegazy , H., Ebid, A. M., Mahdi , I. M., Haggag, S. A., y Rashid, I. A. (2020). Selecting optimum structural system for R.C. multi-story buildings considering direct cost. Structures, 24, 296-303. https://doi.org/10.1016/j.istruc.2020.01.039
FEMA-356. (2000). Prestandard and commentary for the seismic rehabilitation of buildings. Washington DC, USA: Federal Emergency Management Agency.
Filippou, F. C., Popov, E. P., y Bertero, V. V. (1983). Effects of bond deterioration on hysteretic behavior of reinforced concrete joints. Earthquake Engineering Research Center, 137-147. https://nehrpsearch.nist.gov/article/PB84-192020/XAB
Gwalani, P., Singh, Y., y Varum, H. (2020). SEISMIC PERFORMANCE OF RC DUAL SYSTEM BUILDINGS FOR INDIAN CODE. The 17th World Conference on Earthquake Engineering. Senadi, Japan. https://wcee.nicee.org/wcee/article/17WCEE/2b-0008.pdf
Ismael, S. S., y Ahmed, F. R. (2023). Seismic Fragility Curves for Reinforced Concrete Dual System Buildings. ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 11(1), 149-156. https://doi.org/https://doi.org/10.14500/aro.11172
Kolozvari, K., Kalbasi, K., Orackal, K., y Wallace, J. (2021). Three-dimensional shear-flexure interaction model for analysis of non-planar reinforced concrete walls. Journal of Building Engineering, 44. https://doi.org/10.1016/j.jobe.2021.102946
Kolozvari, K., Orakcal, K., y Wallace, J. W. (2015). Shear-Flexure Interaction Modeling of reinforced Concrete Structural Walls and Columns under Reversed Cyclic Loading. University of California, Berkeley: Pacific Earthquake Engineering Research Center. https://apps.peer.berkeley.edu/publications/peer_reports/reports_2015/webPEER-2015-12-kolozvari.pdf
Kostic, S. M., Filippou, F. C., y Lee, C.-L. (2011). An efficient beam-column element for nonlinear 3D frame analysis. Corfu, Greece: In ECCOMAS Thematic Conference-COMPDYN. http://congress.cimne.com/eccomas/proceedings/compdyn2011/compdyn2011_full/238.pdf
MccKenna, F., Fenves, G., Filippou, F., Mazzoni, S., Scott, M., Elgamal, A., y McKenzie, P. (2010). OpenSees. University of California, Berkeley. https://opensees.berkeley.edu/
Mibang, D., y Choudhury, S. (2021). Effect of damage limit states on the seismic fragility of reinforced concrete frame-shear wall buildings. Disaster Advances, 14(9), 57-68. https://doi.org/10.25303/149da5768
Mibang, D., y Choundhury, S. (2021). Performance-Based Design of RC Dual. https://doi.org/10.1007/978-981-15-4577-1_27
Mohammad Eisa, H., y Mohammad Eisa, H. (2020). The necessity of transverse steel reinforcement for confinement in structural reinforced concrete walls using nonlinear static and dynamic analysis method. Facta universitatis-series: Architecture and Civil Engineering, 18(2), 161-175. https://doi.org/10.2298/FUACE200817012M
Mohd Yassin, M. H. (1994). Nonlinear analysis of prestressed concrete structures under monotonic and cyclic loads. Berkeley: University of California. https://www.elibrary.ru/item.asp?id=5691682
NTC-DCEC-23. (2023). Normas Técnicas Complementarias para el Diseño y Construcción de Estructuras de Concreto. Gaceta Oficial de la Ciudad de México. https://smie.com.mx/smie-2022/informacion-tecnica/normas-tecnicas-complementarias.php
NTC-DS-23. (2023). Normas Técnicas Complementarias sobre Diseño por Sismo. Gaceta Oficial de la Ciudad de México. https://smie.com.mx/smie-2022/informacion-tecnica/normas-tecnicas-complementarias.php
Phadnis, P. P. (2021). Fragility Analysis for frame with RC and steel-composite shear wall. Resilient Infrastructure, 202, 143-159. https://doi.org/10.1007/978-981-16-6978-1_11
Pitilakis, D., y Petridis, C. (2022). Fragility curves for existing reinforced concrete buildings, including soil–structure interaction and site amplification effects. Engineering Structures, 269, 114733. https://doi.org/10.1016/j.engstruct.2022.114733
Ruiz Gómez, S. E., Jiménez Jordán, R., Santos Santiago, M. A., y Orellana Ojeda, M. A. (2020). Evaluación de la fragilidad de dos soluciones de rehabilitación para un edificio con planta baja débil dañado durante el sismo 19/s17. Ingeniería sísmica(102), 1-25. https://doi.org/10.18867/ris.102.513
Shome, N., y Cornell, C. A. (1999). Probabilistic seismic demand analysis of nonlinear structures. https://dl.acm.org/citation.cfm?id=928965
Shome, N., y Cornell, C. A. (1999). Probabilistic seismic demand analysis of nonlinear structures. https://dl.acm.org/citation.cfm?id=928965
Sthapit, N., Shrestha, R. K., y Paudel, S. (2023). Seismic Response Analysis of High-Rise Reinforced Concrete Buildings Using Outrigger System. Journal of The Institution of Engineers, 104(4), 943-952. https://doi.org/10.1007/s40030-023-00758-1
Vamvatsikos, D., y Cornell, C. A. (2001). Incremental dynamic analysis. Earthquake engineering & structural dynamics, 31(3), 491-514. https://doi.org/10.1002/eqe.141
Wiyono, D. R., Milyardi, R., y Lesmana, C. (2020). Distribution of Story Shear and Reinforcement in Dual System. In IOP Conference Series: Materials Science and Engineering, 852(1), 012061. https://doi.org/10.1088/1757-899X/852/1/012061
Wong, K. K., y Harris, J. L. (2012). Seismic damage and fragility analysis of structures with tuned mass dampers based on plastic energy. The Structural Design of Tall and Special Buildings, 21(4), 296-310. https://doi.org/10.1002/tal.604

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal Earthquake Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.