FRAGILITY ASSESSMENT OF TWO REHABILITATION SOLUTIONS FOR A FIRST SOFT STORY BUILDING DAMAGED DURING THE 19/S17 MEXICO EARTHQUAKE

Authors

  • Sonia Ruiz Gomez
  • René Jiménez Jordán
  • Marco A Santos Santiago
  • Miguel A. Orellana Ojeda

DOI:

https://doi.org/10.18867/ris.102.513

Keywords:

fragilidad

Abstract

The seismic fragility of a building rehabilitated with different techniques can be very different. Here it is shown that such fragility can be similar when a soft-first story (SFS) building is rehabilitated though concrete jacketing, and alternatively, using buckling restrained braces (BRB). For this aim, it is analyzed a 5-story building with soft first story, located in a site of Mexico City where several structures were damaged during the September 17, 2017 (19/S17) earthquake. The building is constituted by regular R/C moment-resisting frames in the soft story, and confined masonry walls with horizontal steel bars in the upper levels. Three cases are analyzed: S1) which correspond to the original structure with SFS; S2) in which concrete jacketing is used in the columns of the first soft story; and S3) in which steel jacketing and buckling-restrained braces (BRB) are added to the first story; in the cases S2 and S3 the masonry walls are retrofitted with steel mesh and mortar. Ten seismic ground motions are used to excite the structures; they correspond to accelerograms recorded in Mexico City, during the 19/S17 seismic event, in soil with dominant period around 1.0s. Story drifts of the three buildings corresponding to the ten seismic ground motions with different intensities, are presented. Fragility curves of the buildings are calculated for values of the maximum story drifts recommended by the Mexico City Building Code (2017).

Downloads

Download data is not yet available.

Author Biography

Sonia Ruiz Gomez

Investigadora Titular de tiempo completo, en el Instituto de Ingeniería de la UNAM. Ha impartido gran número de cursos en la Facultad de Ingeniería de la UNAM, y actualmente es profesora de la División de Estudios de Maestría y Doctorado en Ingeniería de la UNAM. Pertenece al Sistema Nacional de Investigadores de México. Es miembro de la Academia Mexicana de Ciencias, A. C.

References

ASCE (2017), “Seismic evaluation and retrofit of existing buildings”, ASCE Standard, ASCE/SEI 41-17, Reston, Virginia, USA. DOI: 10.1061/9780784414859

Baker, J y A Cornell (2006). “Spectral shape, epsilon and record selection”, Earthquake Engineering and Structural Dynamics, Vol. 35 pp. 1077-1095. DOI: 10.1002/eqe.571

Beigi, H A, C Christopoulos, T Sullivan y G M Calvi (2014), “Gapped-inclined braces for seismic retrofit of soft-story buildings”, ASCE Journal of Structural Engineering, Vol. 140, No. 11. DOI: 10.1061/(ASCE)ST.1943-541X.0001006

Cabrera López, J L y S E Ruiz Gómez (2019), “Fragilidad de un edificio con piso bajo débil diseñado con las versiones del RCDF-1976, -1987, -2014 y -2017”, XXII Congreso Nacional de Ingeniería Sísmica, Monterrey, N. L., México.

Carr, A (2011), Ruaumoko 3D, inelastic dynamic analysis program, University of Catenbury, Departament of Civil Engineering.

Chopra, A K, D P Clough y R W Clough (1973), “Earthquake resistance of buildings with a soft fist story”, Earthquake Engineering & Structural Dynamics, Vol. 1, No. 4, pp. 347-355. DOI: 10.1002/eqe.4290010405

Choudhury, T y H B Kaushik (2018), “Component level fragility estimation for vertically irregular reinforced concrete frames”, Journal of Earthquake Engineering. DOI: 10.1080/13632469.2018.1453413

CIRES, Base de datos del Centro de Instrumentación y Registro Sísmico, A. C. http://www.cires.org.mx/

Esteva, L (1992), “Nonlinear seismic response of soft-fist.-story buildings subjected to narrow-band accelerograms”, Earthquake Spectra, Vol. 8, No. 3, pp. 373-389. DOI: 10.1193/1.1585686

Flores, L y S Alcocer (1996), “Calculated response of confined masonry structures”, 11th World Conference on Earthquake Engineering. Acapulco, México, Paper No. 1830. ISBN: 008 042822 3

Gobierno del Distrito Federal (2004), “Normas técnicas complementarias para diseño de estructuras de concreto”, Gaceta Oficial del Distrito Federal. https://data.consejeria.cdmx.gob.mx/portal_old/uploads/gacetas/Octubre04_06_103BISTI.pdf

Gobierno del Distrito Federal (2004), “Normas técnicas complementarias para diseño de estructuras de mampostería”, Gaceta Oficial del Distrito Federal. https://data.consejeria.cdmx.gob.mx/portal_old/uploads/gacetas/Octubre04_06_103BISTI.pdf

Gobierno del Distrito Federal (2004), “Normas técnicas complementarias para diseño por sismo”, Gaceta Oficial del Distrito Federal. https://data.consejeria.cdmx.gob.mx/portal_old/uploads/gacetas/Octubre04_06_103BISTII.pdf

Gobierno de la Ciudad de México (2017), “Normas técnicas complementarias para diseño por sismo”, Gaceta Oficial de la Ciudad de México. https://data.consejeria.cdmx.gob.mx/portal_old/uploads/gacetas/841541814eb94e624a8b5c1d07b3c823.pdf

Guerrero, H, Ji T y J A Escobar (2016a), “Experimental studies of a steel frame model with and without buckling-restained braces”, Revista de Ingeniería Sísmica, No. 95, pp. 33-52. DOI: /10.18867/ris.95.338

Guerrero, H, Ji T, A Terán-Gilmore y J A Escobar (2016b), “A method for preliminary seismic design and assessment of low-rise structures protected with buckling-restrained braces”, Engineering Structures, Vol. 123, pp. 141-154. DOI: 10.1016/j.engstruct.2016.05.015

HAZUS (2013) HAZUS –MH MR5, Advanced Engineering Building Module (AEBM), Technical and User´s Manual, FEMA, Washington, D. C.

Hernández García, D A y A Tena Colunga (2016), “Estudio paramétrico de modelos representativos de estructuras propensas a desarrollar pisos suaves ante excitaciones sísmicas de suelos blandos”, Revista de Ingeniería Sísmica, No. 95, pp. 53-80. DOI: 10.18867/ris.95.405

Jiménez Jordán, R (2018), “Curvas de fragilidad de un edificio tipo con planta baja débil dañado por el sismo S-19/2017, y rehabilitado con contravientos restringidos al pandeo”, Tesis de Maestría, Programa de Maestría y Doctorado en Ingeniería, UNAM, México.

Liu, X, Z-Y Wu y F Liang (2016), “Multidimensional performance limit state for probabilitic seismic demand analysis”, Bulletin of Earthquke Engineering, Vol. 4, No. 4, pp. 415-443. DOI: 10.1007/s10518-016-0013-6

Miyamoto, H y R Scholl (1996), “Case study: seismic rehabilitation of a non-ductile soft story concrete structure using viscous dampers”, 11th World Conference on Earthquake Engineering, Acapulco, México, Paper No. 315. ISBN: 008 042822 3

Montiel, M A y S E Ruiz (2007), “Influence of structural capacity uncertainty on seismic reliability of buildings under narrow-band motions”, Earthquake Engineering and Structural Dynamics, Vol. 36, pp. 1915-1934. DOI: 10.1002/eqe.711

Pérez-Gavilán, J J (editor) (2015), Guía de análisis de estructuras de mampostería, Sociedad Mexicana de Ingeniería Estructural, Comité de Mampostería. ISBN- 978-607-95994-1-6

Rosenblueth, E y L Esteva (1972). “Reliability basis for some Mexican codes”. ACI Publ. SP-31 1972, 31, pp. 1-41.

Ruiz, S E (2019), Comentarios al Apéndice B (edificios con disipadores de energía sísmica) de las NTCDS-2017, Serie Investigación y Desarrollo SID 706, Instituto de Ingeniería, UNAM.

Ruiz, S E y R Diederich (1989) “The seismic performance of buildings with weak first story”, Earthquake Spectra, Vol. 5, No. 1, pp. 89-102, DOI: 10.1193/1.1585512

Ruiz, S E, M A Santos-Santiago, M A Orellana y R Jiménez (2019), “Fragility analysis of a soft first story building rehabilitated with buckling restrained braces”, 12th Canadian Conference on Earthquake Engineering, Quebec, QC, Canadá.

Santos Santiago, M A, S E Ruiz Gómez, y R Jiménez Jordán (2018), “Comparación de tres técnicas de rehabilitación para edificios con planta baja débil”, XV Simposio Nacional de Ingeniería Sísmica, Ciudad de México.

Sues, R H, S T Mau, y Y K Wen (1988), “Systems identification of degrading hysteretic restoring forces”, Journal of Engineering Mechanics, Vol. 114, No. 5, pp. 833-846. DOI: 10.1061/(ASCE)0733-9399(1988)114:5(833)

Tena-Colunga, A (2010), “Review of the soft first story irregularity condition of buildings for seismic design”, The Open Civil Engineering Journal, Vol. 4, pp. 1-15, https://opencivilengineeringjournal.com/contents/volumes/V4/TOCIEJ-4-1/TOCIEJ-4-1.pdf

Terán-Gilmore, A y N Virto-Cambray (2009). “Preliminary design of low-rise buildings stiffened with buckling-restrained braces by a displacement-based approach” Earthquake Spectra, Vol. 25, No. 1, pp. 185 -211. DOI: 10.1193/1.3054638

Terán-Gilmore, A, O Zúñiga-Cuevas y J Ruiz-García (2009). “Displacement-based seismic assessment of low-height confined masonry buildings”, Earthquake Spectra, Vol 5, No. 2, pp. 439-464. DOI: /10.1193/1.3111149

Vamvatsikos D, y A Cornell (2002), “Incremental dynamic analysis” Earthquake Engineering & Structural Dynamics Vol. 31, pp. 491-514. DOI: 10.1002/eqe.141

Published

2020-07-01

How to Cite

Ruiz Gomez, S., Jiménez Jordán, R., Santos Santiago, M. A., & Orellana Ojeda, M. A. (2020). FRAGILITY ASSESSMENT OF TWO REHABILITATION SOLUTIONS FOR A FIRST SOFT STORY BUILDING DAMAGED DURING THE 19/S17 MEXICO EARTHQUAKE. Journal Earthquake Engineering, (102), 1–25. https://doi.org/10.18867/ris.102.513

Issue

Section

Numero Especial Sismos Sep17

Metrics

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.