CONTRIBUTION OF CHARACTERISTIC FREQUENCIES TO THE DOMINANT VIBRATION PERIOD IN QUERÉTARO CITY, MEXICO
DOI:
https://doi.org/10.18867/ris.97.482Abstract
This study presents a methodology developed to evaluate the contribution of the characteristic frequency of each layer to the fundamental period of vibration from the inversion of apparent dispersion curves obtained from a surface-wave survey using an active source, independent of the velocity of each layer. The calculation of the fundamental period was achieved using the simplified procedure developed by Dobry et al. (1976) for a linear soil profile. For the classification of shear-wave velocities, a modification of the International Building Code (IBC, 2009) was used for the subsoil material in the city of Querétaro. The main geological units were grouped into three stratigraphic sequences: the plateau volcanic rocks that constitutes the high topographic elevations that surround the valley, the slope deposits composed of volcanic and sedimentary deposits (alluvial), and the plain sequence comprised of stratified deposits of lacustrine, fluvial and volcanic materials. From the analysis of the shear-wave velocity profiles, we observed layers with low shear velocities confined within high shear-velocity strata, indicating the presence of low stiffness layers at different depths. For the rock sequences, the fundamental period of vibration is short (less than 0.1 s), while this period is longer (greater than 0.3 s) in the plain deposits. In the slope area, the period is relatively long (variable from 0.1 s to 0.3 s) possibly due to a topographic effect. The results obtained in this study show that the methodology proposed to evaluate the dominant period from the integration of the characteristic frequencies obtained with surface waves, allows us to estimate the thicknesses and shear velocities of each layer, the fundamental period of each stratigraphic sequence and finally, their site spectra.Downloads
References
Aguirre-Díaz, G J, F R Zúñiga-Dávila Madrid, F J Pacheco-Alvarado, M Guzmán-Speziale y J Nieto-Obregón (2004), “El Graben de Querétaro, México, observaciones de cizallamiento activo”, GEOS, Vol. 20, No. 1, pp. 2-7.
Aki, K (1988), “Local site effects on strong ground motion” in “Earthquake Eng. Soil Dynamics II, recent advances in ground motion evaluation”, Am. Soc. Civil Eng, Geotechnical Special Publication 20, pp. 103-155.
Alaníz-Álvarez, S A, A F Nieto-Samaniego, M A Reyes-Zaragoza, M T Orozco-Esquivel, A C Ojeda-García y F L Vassallo (2001), “Estratigrafía y deformación extensional en la región San Miguel de Allende-Querétaro, México”, Revista Mexicana de Ciencias Geológicas, Vol. 18, No. 2, pp. 129-148.
Alvarez Manilla A, (2002), “Origen y características de los suelos colapsables en la zona metropolitana de Querétaro”. Ed. Sociedad Mexicana de Mecánica de Suelos, XXI Reunión Nacional de Mecánica de Suelos, Santiago de Querétaro, Qro.
Alvarez Manilla A, F Fernández, J García y R M Poot (2000a), “Integración de las condiciones geológica y geohidrológica para formar las zonificaciones geotécnica y sísmica. Caso Querétaro”, Ed. Sociedad Mexicana de Mecánica de Suelos, XX Reunión Nacional de Mecánica de Suelos, Vol. 2, Oaxaca, Oax.
Alvarez Manilla A, F Fernández, J García, y R M Poot (2002b), “Modificaciones a la zonificación geotécnica del valle y zona metropolitana de Querétaro”. Ed. Sociedad Mexicana de Mecánica de Suelos, XXI Reunión Nacional de Mecánica de Suelos. Santiago de Querétaro, Qro.
Anbazhagan, P, M N Sheikh y A Parihar (2013), “Influence of rock depth on seismic site classification for shallow bedrock regions”, Natural Hazards Review, Vol. 14, No. 2, pp. 108-121.
Ballard, R F (1964), “Determination of soil shear moduli depth by in situ vibratory techniques, waterways experiment station”, Miscellaneous Paper No. 4-69, U.S. Army Engineer Waterways Experiment Station, December.
Bazzurro, P y C Allin Cornell (2004), “Ground-motion amplification in nonlinear soil site with uncertain properties”, Bulletin of the Seismological Society of America, Vol. 94, No. 6, pp. 2090–2109.
Bouckovalas, G D y G P Kouretzis (2001), “Stiff soil amplification effects in the 7 September 1999 Athens (Greece) earthquake”, Soil Dynamics and Earthquake Engineering, Vol. 21, No. 8, pp. 671-687. DOI:10.1016/S0267-7261(01)00045-8
Cañas, J A y A Ledesma (1984), Método de inversión generalizada: aplicación en sismología y posibilidad en ingeniería civil, Universidad Politécnica de Cataluña (España), ISSN 0213-1315.
Carreón, D, M Cerca, L Luna González y F J Gámez González (2005), “Influencia de la estratigrafía y estructura geológica en el flujo del agua subterránea del Valle de Querétaro”, Revista Mexicana de Ciencias Geológicas, Vol. 22, No. 1, pp. 1-18.
Carreón-Freyre, D, M. Cerca, G. Ochoa-González, P. Teatini and F.R. Zúñiga, (2016), “Shearing along faults and stratigraphic joints controlled by land subsidence in the Valley of Querétaro, México”. Hydrogeol J. DOI:10.1007/s10040-016-1384-0
Dobry, R, I Oweis y A Urzua (1976), “Simplified procedure for estimating the fundamental period of a soil profile”, Bulletin of the Seismological Society of America, Vol. 66, No. 4, pp. 1293-1321.
Faccioli, E (1991), “Seismic amplification in the presence of geological and topographic irregularities”. in: Proceedings of the 2nd Intern. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis (USA), pp. 1779-1797.
GEC No. 3 (2011), “LRFD seismic analysis and design of transportation geotechnical features and structural foundations. Reference manual”, NHI Course No. 130094, Publication No. FHWA-NHI-11-032, U.S. Department of Transportation, Federal Highway Administration.
Finn, W, D L y M K W Lee (1991), DESRA-2C: Dynamic effective stress response analysis of soil deposits with energy transmitting boundary including assessment of liquefaction potential. Univ. of British Columbia, Faculty of Applied Science.
Foti, S (2000), “Multi station methods for geotechnical characterization using Surface waves”, Disertación Doctoral, Politecnico di Torino. http://porto.polito.it/2497212/
Gazetas, G, P N Kallow y P N Psarropoulos (2002), “Topography and soil effects in the Ms 5.9 Parnitha (Athens) earthquake: The case of Adámes”. Natural Hazards 27: 133–169. © 2002 Kluwer Academic Publishers. Printed in the Netherlands. DOI:10.1023/A:1019937106428
Gómez-González, J M (2007), “Descripción preliminar de la actividad sísmica ocurrida en noviembre de 2007 en el Municipio de Landa de Matamoros, Qro”. Entregado a Protección Civil del Estado y al Gobierno Municipalidad de Landa de Matamoros, Qro. P. 6.
Hardin, B O y V P Drnevich (1972a), “Shear modulus and damping in soils: Measurement and parameter effects”. Journal of Soil Mechanics and Foundations. Division, ASCE. Vol. 98, No. 6, pp. 603-624
International Building Code (IBC) (2009), International building code, International Code Council, Inc. Uniform Building Code, Whittier, S A., pp. 367-368.
Jones, R B (1962), “Surface wave techniques for measurements the elastic properties and thickness of roads: theoretical development”, British Journal of Applied Physics, Vol. 13, pp. 21-29.
Kham, M, J-F Semblat y N Bouden-Romdhane (2013), “Amplification of seismic ground motion in the Tunois basin: Numerical BEM simulation vs experimental evidences”, Engineering Geology, Vol. 154, pp. 80-86, DOI:10.1016/j.enggeo.2012.12.016.
Kokusho, T, Y Yoshida y Y Esashi (1982), “Dynamic properties of soft clay for wide strain range”. Soils and Foundations, Vol. 22, No. 4, pp. 1-18. DOI:10.3208/sandf1972.22.4_1
Lermo, J y F J Chávez-García (1993), “Site effect evaluation using spectral ratios with only one station”, Bulletin of the Seismological Society of America, Vol. 83, No. 5, pp. 1574-1594.
Lermo, J y F J Chávez-García (1994), “Are microtremors useful in site response evaluation”, Bulletin of the Seismological Society of America, Vol. 84, No. 5, pp. 1350-1364.
Li, X (1992), “Electrical resistivity tomography: methods and techniques”, Thesis, Jilin University. Changchun, P. R. China.
León-Loya R A (2014), “Estado y clasificación de la microsismicidad en la parte central de la Sierra Madre Oriental”. Tesis de Maestría en Ciencias. Universidad Nacional Autónoma de México. Programa de Posgrado en Ciencias de la Tierra.
López-Lara T (2002), “Estudio físico-químico de la modificación de suelos arcillosos”. Tesis Doctoral, DEPFI. Universidad Autónoma de Querétaro.
Martínez González, J A (2015), “Validación del factor de amplificación de los cocientes espectrales a partir de microtremores para fines de mapas sísmicos de intensidad”, Tesis de Maestría en Ingeniería. Universidad Nacional Autónoma de México, pp. 7-51.
Miller, R D, J Xia, C B Park y J Ivanov (1999), “Multichannel analyses of surface waves to map bedrock”, The Leading Edge, Vol. 18, No. 12, pp. 1392-1396. DOI:10.1190/1.1438226
Nakamura, Y (1989), “A method for dynamic characteristics estimation of subsurface using microtremors on the ground surface”. Railway Technical Research Institute, Quarterly Reports, Vol. 30, No.1, pp. 25-33.
Norini, G, L Capra, L Borselli, F R Zúñiga, L Solari y D Sarocchi (2010), “Large scale landslides triggered by quaternary tectonics in the Acambay graben, Mexico”, Earth Surf. Process. Landforms, Vol. 35, No.12, pp. 1445–1455, DOI:10.1002/esp.1987
Park, C, R Miller y J Xia (1999), “Multichannel analysis of surface waves”, Geophysics, Vol. 64, No. 3, pp. 800-808. DOI:10.1190/1.1444590
Pascuare, G, L Ferrari, V Perazzoli, M Tiberi y F Turchetti (1987), “Morphological and structural analysis of the central sector of the Transmexican Volcanic Belt”, Geofísica Internacional, Vol. 26, No. 2, pp. 177-193.
Pichugin, V (2008), “Approximation of Rayleigh wave speed”, Preprinted submitted to Elsevier Science. http://people.brunel.ac.uk/~mastaap/draft06rayleigh.pdf
Rahman, M y J R Barber, (1995), “Exact expressions for the roots of the secular equation for Rayleigh waves”, J. Appl. Mech., Transactions of the ASME, Vol. 62, No. 1, pp. 250-252. DOI:10.1115/1.2895917
Sadouki A., Z Harichane y A Chehat (2012), “Response of randomly inhomogeneous layered media to harmonic excitations”. Soil Dynamics and Earthquake Engineering, Vol. 36, pp. 84–95. DOI:10.1016/j.soildyn.2012.01.007
Sherif, R E y L P Geldart (1982), Exploration Seismology, University Press. Cambridge.
Stokoe, K H, S G Wright, J A Bay y J M Roesset (1994), “Characterization of geotechnical sites by SASW method: geophysical characterization of sites”, ISSMFE Technical Committee # 10, XIII ICSMFE, International Science Publishers, New York, Eds. Woods, R, pp. 15-25.
Strobbia, C (2006), “Surface wave methods. Acquisition, processing and inversion”. Dottorato di Ricerca in Geoingenieria Ambiental. Politecnico de Torino.
Viktorov, I A (1967), Rayleigh and Lamb waves: physical theory and applications, Plennum Press, New York, pp. 154.
Wilding, A (2008), "Development of a FIS-based seismic hazard screening tool". Master Theses. Scholar's Mine, Missouri S &T. p. 172.
Yamanaka y H Ishida (1996). “Application of genetic algorithms to an inversion of surface-wave dispersion data”, Bulletin of the Seismological Society of America, Vol. 86, No. 2, pp. 436-444.
Yee, E, J P Stewart y K Tokimatsu (2011), “Nonlinear site response and seismic compression at vertical array strongly shaken by 2007 Niigata-ken Chuetsu-oki earthquake”. PEER Report 2011/107. December 2011.
Zhao, D (1992), “Rayleigh wave method and data processing system”, Thesis, Jilin University. Changchun, P. R. China.
Zuñiga F R, J F Pacheco, M Guzmán Speziale, G Aguirre Díaz, V H Espíndola y E Nava (2003), “The Sanfandila earthquake sequence of 1998, Querétaro, México: Activation of a non-documented fault in the northern edge of Central Transmexican Volcanic Belt”, Tectonophysics, Vol. 361, No. 3-4, pp. 229-238. DOI:10.1016/S0040-1951(02)00606-6
Zúñiga-Dávila, F R, J M Gómez-González y M Guzmán Speziale (2009), “La sismicidad de Querétaro”, en El Valle de Querétaro y su geoentorno, Tomo 1. Eds. Cortés Silva, A, J A Arzate Flores y A A Lozano Guzmán, CONCYTEQ/UNAM/UNIV AUT QRO.