CRITERIOS PARA OBTENER ACELEROGRAMAS DE DISEÑO EN SITIOS AFECTADOS POR VARIAS FUENTES SÍSMICAS USANDO COMO EJEMPLO EL CASO DE TERRENO FIRME DE LA CIUDAD DE MEXICO

Autores/as

  • Eduardo Reinoso Universidad Nacional Autónoma de México
  • Miguel A. Jaimes Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.18867/ris.81.73

Resumen

Se propone una metodología para obtener acelerogramas en un sitio afectado por varias fuentes sísmicas. El método consiste en: (1) identificar las principales fuentes sísmicas que afectan al sitio; (2) elaborar un análisis de peligro sísmico probabilista; (3) estimar el espectro de peligro uniforme asociado a un periodo de retorno; (4) aplicar un análisis de desagregación del peligro sísmico probabilista; (5) generar movimientos sísmicos simulados de los escenarios sísmicos; y (6) seleccionar el número de movimientos para abarcar por completo el espectro de peligro uniforme. Se obtiene como ejemplo una familia de movimientos sísmicos en terreno firme de la ciudad de México para que sean usados en la práctica. Se muestra que los registros seleccionados son un conjunto muy útil de todos los movimientos posibles que podrían afectar la ciudad y están disponibles para usarse por ingenieros estructurales y eventualmente poderse incluir en el código. 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alamilla, J, L Esteva, P J García y L O Díaz (2001), “Simulating earthquake ground motion at a site, for given intensity and uncertain source location”, Journal of Seismology, Vol. 5, No. 4, pp. 475-485.

Baker, J W, C A Cornell y P Tothong (2005), “Disaggregation of seismic drift hazard”, Proceedings, 9th International Conference on Structural Safety and Reliability (ICOSSAR05), Rome, Italy, 7p.

Baker, J W, y C A Cornell (2005), “A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon”, Earthquake Engineering and Structural Dynamics, Vol. 34, pp. 1193-1217.

Baker, J W y C A Cornell (2006), “Spectral shape, epsilon and record selection”, Earthquake Engineering and Structural Dynamics, Vol. 35, pp. 1077-1095.

Bazurro, P y C Cornell (1999), “Disaggregation of seismic hazard”, Bulletin Seismological Society of America, Vol. 89, No.2, pp. 501-520.

Bommer, J J, S G Scott y S K Sarma (1998), “Time-history representation of seismic hazard”, 11th European Conference on Earthquake Engineering, Balkema, Rotterdam.

Bommer, J J, S G Scott y S K Sarma (2000), “Hazard-consistent earthquake scenarios”, Soil Dynamics and Earthquake Engineering, Vol. 19, pp. 219-231.

Bommer, J J y A B Acevedo (2004), “The use of real earthquake accelerograms as input to dynamic analysis”, Journal of Earthquake Engineering, Vol. 8, pp. 43–91.

Boore, D G (1983), “Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra”, Bulletin Seismological Society of America, Vol. 73, pp. 1865-1894.

Carballo, J E, y C A Cornell (2000), “Probabilistic seismic demand analysis: spectrum matching and design”, Department of Civil and Environmental Engineering, Stanford University, Report No.

RMS-41.

Chan, S, S Ruiz y M Montiel (2005), “Escalamiento de acelerogramas y mínimo número de registros requeridos para el análisis de estructuras” Revista de Ingeniería Sísmica SMIS, No. 7, pp. 1-24.

Chapman, M (1995), “A probabilistic approach to ground-motion selection for engineering design”, Bulletin Seismological Society of America, Vol. 85, No. 3, pp. 937-942.

Cornell, C A (1968), “Engineering seismic risk analysis”, Bulletin Seismological Society of America, Vol. 58, No. 5, pp. 1583-1606.

Esteva, L (1967). “Criterios para la construcción de espectros para diseño sísmico”, 3er Simposio Panamericano de Estructuras, Caracas, Venezuela.masonry walls”, Report No NBSIR 85-3143, National Bureau of Standards.

Gasparini, D, y E H Vanmarcke (1976), “SIMQKE: A Program for artificial motion generation”, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA.

García, D, S K Singh, M Herráiz, J F Pacheco y M Ordaz (2004), “Inslab earthquakes of central Mexico: Q, source spectra and stress drop”, Bulletin Seismological Society of America, Vol. 94, No. 3, pp. 789-802.

Harmsen, S, y A Frankel (2001), “Geographic disaggregation of seismic hazard in the United States”,

Bulletin Seismological Society of America, Vol. 91, No. 1, pp. 13–26.

Hartzell, S (1978), “Earthquake aftershocks as Green’s functions”, Geophysical Research Letter, 5, 1-4.

Iervolino, I y C A Cornell (2005), “Record selection for nonlinear seismic analysis of structures”, Earthquake Spectra, Vol. 21, No. 3, pp. 685-713.

Iglesias, A, S K Singh, J F Pacheco y M Ordaz (2002), “A source and wave propagation study of the Copalillo, Mexico earthquake of July, 2000 (Mw=5.9): Implications for seismic hazard in Mexico city from Inslab earthquakes”, Bulletin Seismological Society of America, Vol. 92, No. 3, pp. 1060-1071.

Ishikawa, Y y H Kameda (1988), “Hazard-consistent magnitude and distance for extended seismic risk analysis”, Proceedings of 9th World Conference on Earthquake Engineering, Tokyo, Kyoto, Japón, II, pp. 89-94.

Ishikawa, Y y H Kameda (1991), “Probability-based determination of specific scenario earthquake”, Proceedings of Fourth International Conference of Seismic Zonation, Stanford CA, II, pp. 3-10.

Jaimes, M A y E Reinoso (2006), “Comparación del comportamiento de edificios en el valle de México ante sismos de subducción y falla normal”, Revista de Ingeniería Sísmica, SMIS, No. 74, pp. 1-21.

Jaimes, M A, E Reinoso y M Ordaz (2006), “Comparison of methods to predict response spectra at instrumented sites given the magnitude and distance of an earthquake”, Journal of Earthquake Engineering, Vol. 10, No. 5, pp. 1-16.

Jaimes, M A, E Reinoso y M Ordaz (2008), “Empirical Green’s function modified by attenuation for sources located at intermediate and far distances from the original source”, Journal of Earthquake Engineering, Vol. 12, p.p. 1-12.

Kurama, Y C y K T Farrow (2003), “Ground motion scaling methods for different site conditions and structure characteristics”, Earthquake Engineering and Structural Dynamics, Vol. 32, pp. 2425-2450.

Lam, N, J Wilson y G Hutchinson (1996), “Buildings ductility demand: interplate versus intraplate earthquakes”, Earthquake Engineering and Structural Dynamics, Vol. 25, pp. 965-985.

Lee, L H, H H Lee, y S W Han (2000), “Method of selecting design earthquake ground motions for tall buildings”, Structural Design of Tall Buildings, Vol. 9, No. 3, pp. 201–213.

Luco, N y P Bazzurro (2007), “Does amplitude scaling of ground motion records result in based nonlinear structural drift response?”, Earthquake Engineering and Structural Dynamics, Vol. 36, pp. 1813-1835.

Malhotra, P K (2003), “Strong-motion records for site-specific analysis”, Earthquake Spectra, Vol. 19, No. 3, pp. 557–578.

McGuire, R K (1995), “Probabilistic seismic hazard analysis and design earthquakes: closing the loop”, Bulletin Seismological Society of America, Vol. 85, No. 5, pp. 1275-1284.

Montalvo-Arrieta, J (2002), “La respuesta sísmica del terreno firme en la Ciudad de México. Observaciones y modelos”, Tesis de doctorado, Posgrado de Ingeniería, UNAM.

Naeim, F y M Lew (1995), “On the use of the design spectrum compatible time histories”, Earthquake Spectra, Vol. 11, No. 1, pp. 111-127.

Naeim, F, A Alimoradi y S Pezeshk (2004), “Selection and scaling of ground motion time histories for structural design using genetic algorithms”, Earthquake Spectra, Vol. 20, No. 2, pp. 413–426.

Nishenko, S P y S K Singh (1987), “The Acapulco-Ometepec, México earthquake of 1907-1982: evidence for a variable recurrence history”, Bulletin Seismological Society of America, Vol. 77, No. 4, pp. 1359-1367.

Nojima, N y H Kameda (1988), “Simulation of risk-consistent earthquake motion”, Proc. of Ninth World Conference on Earthquake Engineering, Tokyo, Kyoto, Japan, II, pp. 95-100.

Ordaz, M, y S K Singh (1992), “Source spectra and spectral attenuation of seismic waves from Mexican earthquakes, and evidence of amplification in the hill zone of Mexico City”, Bulletin Seismological Society of America, Vol. 82, No. 41, 24-42.

Ordaz, M, J Arboleda y S K Singh (1995), “A scheme of random summation of an empirical Green’s function to estimate ground motions from future large earthquakes”, Bulletin Seismological Society of America, Vol. 85, No. 6, 1635-1647.

Ordaz, M, E Miranda y J Avilés (2000), “Propuesta de espectros de diseño por sismo para el DF”, Memorias del XII Congreso Nacional de Ingeniería Estructural, León, CD, noviembre.

Sadigh, K, C Y Chang, J A Egan, F Makdise y R R Youngs (1997), “Attenuation relationships for shallow crustal earthquakes based on California strong motion data”, Seismological Research Letters, Vol. 68, No. 1, pp. 180-189.

Shome, N, C A Cornell, P Bazurro y J E Carballo (1998), “Earthquakes, records and nonlinear responses”, Earthquake Spectra, Vol. 14, No. 3, pp. 469-500.

Shome, N y C A Cornell (1999), “Probabilistic seismic hazard demand analysis of nonlinear structures”, Reliability of Marine Structures Programs, Report No. RMS-35, Dept. of civil Eng., Stanford University, Stanford, CA.

Silva W, N Gregor y B Darragh (1999), “Near fault motions”, Report for PG&E PEER.

Singh, S K, R Apsel, J Fried y J N Brune (1982), “Spectral attenuation of SH waves along the Imperial fault”, Bulletin Seismological Society of America, Vol. 72, No.6A, pp. 2003-2016.

Wang, Y, X Liu y M Cheng (1991), “Study on the input of earthquake ground motion for time-history analysis of structures”, Journal of Building Structures, Vol. 12, No. 2, pp. 51–60.

Zhai, C y L Xie (2007), “A new approach of selecting real input ground motions for seismic design: The most unfavorable real seismic design ground motions”, Earthquake Engineering and Structural Dynamics, Vol. 36, pp. 1009-1027.

Descargas

Publicado

2009-07-01

Cómo citar

Reinoso, E., & Jaimes, M. A. (2009). CRITERIOS PARA OBTENER ACELEROGRAMAS DE DISEÑO EN SITIOS AFECTADOS POR VARIAS FUENTES SÍSMICAS USANDO COMO EJEMPLO EL CASO DE TERRENO FIRME DE LA CIUDAD DE MEXICO. Revista Ingeniería Sísmica , (81), 1–18. https://doi.org/10.18867/ris.81.73

Número

Sección

Artículos

Métrica

Artículos más leídos del mismo autor/a