REDUCCIÓN DE LA RESPUESTA PRODUCIDA POR AMORTIGUAMIENTO Y FLUENCIA EN MARCOS DE ACERO RESISTENTES A MOMENTO DE BAJA, MEDIANA Y GRAN ALTURA

Autores/as

  • Oscar D. Gaxiola Camacho
  • Alfredo Reyes Salazar
  • J. Ramón Gaxiola Camacho
  • Edén Bojórquez Mora Universidad Autónoma de Sinaloa
  • Federico Valenzuela Beltrán
  • Mario D. Llanes Tizoc
  • Juan Bojórquez

DOI:

https://doi.org/10.18867/ris.110.578

Palabras clave:

edificios de acero, marcos de acero resistentes a momento, amortiguamiento viscoso, fluencia del material estructural, sistemas de varios grados de libertad

Resumen

Se presentan los resultados de un estudio numérico para evaluar la reducción de la respuesta producida por fluencia del material y amortiguamiento viscoso en marcos de acero resistentes a momento (SMRFs) modelados como sistemas complejos de varios grados de libertad. Se consideran tres modelos que representan edificios de acero de baja, media y gran altura. Se muestra que la reducción máxima producida por fluencia ocurre para cortantes de entrepiso, seguida de las de momentos flexionantes, desplazamientos de entrepiso, desplazamiento de azotea y carga axial. Los cortantes de entrepiso elásticos, por ejemplo, pueden ser hasta 300% más grandes que los inelásticos; sin embargo, para cargas axiales, esta cantidad varía de 0% a aproximadamente 70%, mostrando algunas limitaciones de los métodos sísmicos de análisis estático lateral y modal, en donde tanto los cortantes elásticos como las fuerzas en los miembros se reducen en la misma proporción. La implicación de esto es que el uso de métodos simplificados puede dar como resultado diseños no conservadores. Las reducciones producidas por fluencia son mayores que las de amortiguamiento para el caso de cortantes de entrepiso y momentos flexionantes; sin embargo, tales reducciones son mayores para amortiguamiento para cargas axiales. Por lo tanto, no es apropiado expresar las reducciones de la respuesta producida por fluencia en términos de una cantidad fija de amortiguamiento viscoso, como generalmente se adopta en los códigos sísmicos. Esta práctica da como resultado un diseño conservador para cortantes de entrepiso y momentos flexionantes, pero puede ser no conservador para el caso de cargas axiales. Un valor del 5% se puede utilizar en forma conservadora para cortantes de entrepiso y momentos flexionantes.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abadi, R. E., & Bahar, O. (2018). Investigation of the LS level hysteretic damping capacity of steel MR frames’ needs for the direct displacement-based design method. KSCE Journal of Civil Engineering, 22(4), 1304–1315. https://doi.org/10.1007/s12205-017-1321-3

Agency, F. E. M. (2000). State of the art report on systems performance of steel moment frames subjected to earthquake ground shaking.

Arroyo-Espinoza, D., & Teran-Gilmore, A. (2003). Strenght reduction factors for ductile structures with passive energy dissipating devices. Journal of Earthquake Engineering, 7(2), 297–325. https://doi.org/10.1080/13632460309350450

Ayoub, A., & Chenouda, M. (2009). Response spectra of degrading structural systems. Engineering Structures, 31(7), 1393–1402. https://doi.org/10.1016/j.engstruct.2009.02.006

Bagheri, S., Barghian, M., Saieri, F., & Farzinfar, A. (2015). U-shaped metallic-yielding damper in building structures: Seismic behavior and comparison with a friction damper. Structures, 3, 163–171. https://doi.org/10.1016/j.istruc.2015.04.003

Beheshti-Aval, S. B., Mahbanouei, H., & Zareian, F. (2013). A hybrid friction-yielding damper to equip concentrically braced steel frames. International Journal of Steel Structures, 13(4), 577–587. https://doi.org/10.1007/s13296-013-4001-2

Bruneau, M., Uang, C., & Whittaker, A. (2018). Ductil design of steel structures. McGrau-Hill.

Carr, A. (2016). RUAUMOKO, Inelastic dynamic analysis program.

Chopra, A. . (2012). Dynamics of structures. Prentice Hall.

Codes, C. C. on B. and F. (2010). The national building code of Canada.

Committee European de Normalisation, E. S. E. 1998-1:2004. (2004). Eurocode 8: Design of structures for earthquake resistance, Part 1, General rules, seismic actions and rules for buildings.

Ganjavi, B., & Hao, H. (2012). Effect of structural characteristics distribution on strength demand and ductility reduction factor of MDOF systems considering soil-structure interaction. Earthquake Engineering and Engineering Vibration, 11(2), 205–220. https://doi.org/10.1007/s11803-012-0111-7

Gillie, J. L., Rodriguez-Marek, A., & McDaniel, C. (2010). Strength reduction factors for near-fault forward-directivity ground motions. Engineering Structures, 32(1), 273–285. https://doi.org/10.1016/j.engstruct.2009.09.014

Gulkan, P., & Sozen, M. (1974). Inelastic response of reinforced concrete structures to earthquake motions. ACI Journal, 71(12), 604–610.

Hadjian, A. . (1989). An evaluation of the ductility reduction factor Q in the 1976 regulations for the Federal District of Mexico. Earthquake Engineering and Structural Dynamics, 18, 217–231.

Hadjian, A. H. (1982). A re-evaluation of equivalent linear models for simple yielding systems. Earthquake Engineering & Structural Dynamics, 10(6), 759–767. https://doi.org/10.1002/eqe.4290100602

Hong, H. P., & Jiang, J. (2004). Ratio between peak inelastic and elastic responses with uncertain structural properties. Canadian Journal of Civil Engineering, 31(4), 703–711. https://doi.org/10.1139/l04-048

International Code Council. (2009). International building code (IBC). www.iccsafe.org/CodesPlus

Iwan, W. D. (1980). Estimating inelastic response spectra from elastic spectra. Earthquake Engineering & Structural Dynamics, 8(4), 375–388. https://doi.org/10.1002/eqe.4290080407

Jennings, P. C. (1968). Equivalent viscous damping for yielding structures. Journal of the Engineering Mechanics Division, 94(1), 103–116. https://doi.org/10.1061/JMCEA3.0000929

Lavan, O., & Avishur, M. (2013). Seismic behavior of viscously damped yielding frames under structural and damping uncertainties. Bulletin of Earthquake Engineering, 11(6), 2309–2332. https://doi.org/10.1007/s10518-013-9479-7

Leon, R. T., & Shin, K. J. (1995). Performance of semi-rigid frames. Proceedings of Structures XIII Congress ASCE, 1020–1035.

Levy, R., Rutenberg, A., & Qadi, K. (2006). Equivalent linearization applied to earthquake excitations and the relationships. Engineering Structures, 28(2), 216–228. https://doi.org/10.1016/j.engstruct.2005.07.004

Miranda, E., & Bertero, V. V. (1994). Evaluation of strength reduction factors for earthquake-resistant design. Earthquake Spectra, 10(2), 357–379. https://doi.org/10.1193/1.1585778

Nader, M. N., & Astaneh, A. (1991). Dynamic behavior of flexible, semirigid and rigid steel frames. Journal of Constructional Steel Research, 18(3), 179–192. https://doi.org/10.1016/0143-974X(91)90024-U

Newmark, N., & Hall, W. (1982). Earthquake spectra and design. In EERI Monographs.

Osman, A., Ghobarah, A., & Korol, R. M. (1995). Implications of design philosophies for seismic response of steel moment frames. Earthquake Engineering & Structural Dynamics, 24(1), 127–143. https://doi.org/10.1002/eqe.4290240110

Pall, A. S., & Marsh, C. (1982). Response of friction damped braced frames. Journal of the Structural Division, 108(6), 1313–1323. https://doi.org/10.1061/JSDEAG.0005968

Preserve, L., Chen, W. F., & Atsuta, T. (1971). Interaction equations for biaxially loaded sections. http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/284

Pu, W., Kasai, K., Kabando, E. K., & Huang, B. (2016). Evaluation of the damping modification factor for structures subjected to near-fault ground motions. Bulletin of Earthquake Engineering, 14(6), 1519–1544. https://doi.org/10.1007/s10518-016-9885-8

Puthanpurayil, A. M., Lavan, O., Carr, A. J., & Dhakal, R. P. (2016). Elemental damping formulation: an alternative modelling of inherent damping in nonlinear dynamic analysis. Bulletin of Earthquake Engineering, 14(8), 2405–2434. https://doi.org/10.1007/s10518-016-9904-9

Ramirez, O. M., Constantinou, M. C., Gomez, J. D., Whittaker, A. S., & Chrysostomou, C. Z. (2002). Evaluation of simplified methods of analysis of yielding structures with damping systems. Earthquake Spectra, 18(3), 501–530. https://doi.org/10.1193/1.1509763

Ramirez, O. M., Constantinou, M. C., Whittaker, A. S., Kircher, C. A., Johnson, M. W., & Chrysostomou, C. Z. (2003). Validation of the 2000 NEHRP provisions’ equivalent lateral force and modal analysis procedures for buildings with damping systems. Earthquake Spectra, 19(4), 981–999. https://doi.org/10.1193/1.1622392

Reyes-Salazar, A., & Haldar, A. (1999). Nonlinear seismic response of steel structures with semi-rigid and composite connections. Journal of Constructional Steel Research, 51(1), 37–59. https://doi.org/10.1016/S0143-974X(99)00005-X

Reyes-Salazar, A., & Haldar, A. (2000). Dissipation of energy in steel frames with PR connections. Structural Engineering and Mechanics, 9(3), 241–256. https://doi.org/10.12989/sem.2000.9.3.241

Reyes-Salazar, A., & Haldar, A. (2001). Seismic response and energy dissipation in partially restrained and fully restrained steel frames: An analytical study. Steel and Composite Structures, 1(4), 459–480. https://doi.org/10.12989/scs.2001.1.4.459

Rodrigues, H., Varum, H., Arêde, A., & Costa, A. (2012). A comparative analysis of energy dissipation and equivalent viscous damping of RC columns subjected to uniaxial and biaxial loading. Engineering Structures, 35, 149–164. https://doi.org/10.1016/j.engstruct.2011.11.014

Roeder, C. W., Schneider, S. P., & Carpenter, J. E. (1993). Seismic behavior of moment‐resisting steel frames: analytical study. Journal of Structural Engineering, 119(6), 1866–1884. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1866)

Rupakhety, R., & Sigbjörnsson, R. (2009). Ground-motion prediction equations (GMPEs) for inelastic displacement and ductility demands of constant-strength SDOF systems. Bulletin of Earthquake Engineering, 7(3), 661–679. https://doi.org/10.1007/s10518-009-9117-6

Sanchez-Ricart, L. (2010). Reduction factors in seismic codes: on the components to be taken into account for design purposes. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 4(4), 208–229. https://doi.org/10.1080/17499511003676671

Schneider, S. P., Roeder, C. W., & Carpenter, J. E. (1993). Seismic behavior of moment‐resisting steel frames: experimental study. Journal of Structural Engineering, 119(6), 1885–1902. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1885)

Sepahvand, M. F., Akbari, J., & Kusunoki, K. (2018). Optimum plastic design of moment resisting frames using mechanism control. Structures, 16, 254–268. https://doi.org/10.1016/j.istruc.2018.10.002

SHEN, J., & AKBAŞ, B. (1999). Seismic energy demand in steel moment frames. Journal of Earthquake Engineering, 3(4), 519–559. https://doi.org/10.1080/13632469909350358

Smyrou, E., Blandon, C., Antoniou, S., Pinho, R., & Crisafulli, F. (2011). Implementation and verification of a masonry panel model for nonlinear dynamic analysis of infilled RC frames. Bulletin of Earthquake Engineering, 9(5), 1519–1534. https://doi.org/10.1007/s10518-011-9262-6

Stamatopoulos, G. N. (2014). Seismic response of steel frames considering the hysteretic behaviour of the semi-rigid supports. International Journal of Steel Structures, 14(3), 609–618. https://doi.org/10.1007/s13296-014-3019-4

UBC. (1997). Structural engineering design provisions, uniform building code. International Conference of Building Officials.

Val, D. V., & Segal, F. (2005). Effect of damping model on pre-yielding earthquake response of structures. Engineering Structures, 27(14), 1968–1980. https://doi.org/10.1016/j.engstruct.2005.06.018

Wijesundara, K. K., Nascimbene, R., & Sullivan, T. J. (2011). Equivalent viscous damping for steel concentrically braced frame structures. Bulletin of Earthquake Engineering, 9(5), 1535–1558. https://doi.org/10.1007/s10518-011-9272-4

Yapıcı, O., Gündüz, A. N., & Aksoylar, C. (2019). Experimental and numerical investigation of material non-linearity in steel elements under different loading protocols. Structures, 20, 74–87. https://doi.org/10.1016/j.istruc.2019.03.003

Zahrai, S. M., & Cheraghi, A. (2017). Reducing seismic vibrations of typical steel buildings using new multi-level yielding pipe damper. International Journal of Steel Structures, 17(3), 983–998. https://doi.org/10.1007/s13296-017-9010-0

Zand, H., & Akbari, J. (2018). Selection of viscous damping model for evaluation of seismic responses of buildings. KSCE Journal of Civil Engineering, 22(11), 4414–4421. https://doi.org/10.1007/s12205-018-0860-6

Descargas

Publicado

2023-06-30

Cómo citar

Gaxiola Camacho, O. D. ., Reyes Salazar, A., Gaxiola Camacho, J. R., Bojórquez Mora, E., Valenzuela Beltrán, F., Llanes Tizoc, M. D., & Bojórquez, J. (2023). REDUCCIÓN DE LA RESPUESTA PRODUCIDA POR AMORTIGUAMIENTO Y FLUENCIA EN MARCOS DE ACERO RESISTENTES A MOMENTO DE BAJA, MEDIANA Y GRAN ALTURA. Revista De Ingeniería Sísmica , (110), 86–108. https://doi.org/10.18867/ris.110.578

Número

Sección

Artículos

Métrica

Artículos más leídos del mismo autor/a

1 2 > >> 

Artículos similares

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.