EVALUACIÓN DE LAS REGLAS MÁS COMUNES DE COMBINACIÓN
DOI:
https://doi.org/10.18867/ris.73.63Resumen
Se estudia la precisión de las reglas de la Raíz Cuadrada de la Suma de los Cuadrados (SRSS) y la
del 30 por-ciento (30%), las que comúnmente se usan en la estimación del efecto combinado de las
componentes horizontales de terremotos. Las respuestas sísmicas máximas de varios modelos
estructurales se estiman de la forma más real posible aplicando simultáneamente ambas componentes. Los resultados se comparan con los obtenidos de las reglas de combinación. El
estudio numérico indica que ambas reglas estiman apropiadamente el efecto combinado en términos
de carga axial para el caso elástico. Sin embargo, para el caso inelástico dicho efecto puede ser
subestimado. Se muestra que dicha subestimación es mayor para la regla SRSS que para la del 30%.
No se observa correlación alguna entre el nivel de subestimación y la altura de los marcos o el
período predominante de los terremotos. Los resultados muestran también la importancia de la
razón de las respuestas máximas de cada componente. Con base en los resultados obtenidos en este
estudio, se concluye que los requerimientos de diseño sísmico para la estimación de la respuesta
combinada deben ser modificados. Se proponen nuevas formas de combinación.
Descargas
Citas
Bathe, K J (1982), Finite element procedures in engineering analysis, Prentice-Hall, Englewood Cliffs, Nueva Jersey.
Clough, R W y J Penzien (1993), Dynamic of structures, McGraw Hill, Nueva York.
Correnza, J C y G L Hutchinson (1994), “Effect of transverse load resisting elements on inelastic response of eccentric-plan buildings”, Earthquake Engineering and Structural Dynamics, Vol. 23, pp. 75-89.
Der Kiureghian, A (1981), “A response spectrum method for random vibration analysis of
MDOF systems”, Earthquake Engineering and Structural Dynamics, Vol. 9, pp. 419-435.
Fernández-Dávila, I, S Cominetti y E F Cruz (2000), “Considering the bidirectional effect and the seismic angle variations in buildings design”, Memorias, 12th World Conference on Earthquake Engineering, Auckland, Nueva Zelanda, febrero, Artículo No. 435.
Gao, L y A Haldar (1995), “Nonlinear seismic response of space structures with PR connections”, International Journal of Microcomputers in Civil Engineering, Vol. 10, pp. 27-37.
Hernández, J J y O A López (2003), “Evaluation of combination rules for peak response
calculation in three-component seismic analysis”, Earthquake Engineering and Structural
Dynamics, Vol. 32, pp. 1585-1602.
Haldar, A y S Mahadevan (2000), Probability, reliability and statistical methods in engineering design, John Wiley and Sons, Nueva York.
Kondo, K y S N Atluri (1987), “Large deformation elasto-plastic analysis of frames under nonconservative loading using explicitly derived tangent stiffness based on assumed stress”, Computational Mechanics, Vol. 2, No. 1, pp 1-25.
Leger, P y S Dussault (1992), “Seismic energy dissipation in MDOF structures”, ASCE Journal of Structural Engineering, Vol. 118, No. 5, pp. 1251-1269.
López, O y R Torres (1997), “The critical angle of seismic incidence and the maximum structural response”, Earthquake Engineering and Structural Dynamics, Vol. 26, pp. 881-894.
López, O A y R Torres (1996), Discussion of “A clarification of orthogonal effects in a threedimensional seismic analysis”, Earthquake Spectra, Vol. 12, pp. 357-361.
López, O A, A K Chopra y J J Hernández (2001), “Evaluation of combination rules for maximum response calculation in multicomponent seismic analysis”, Earthquake Engineering and Structural Dynamics, Vol. 30, pp. 1379-1398.
Menun, C y A Der Kiureghian (1998), “A replacement for the 30%, 40% and SRSS rules for multicomponent seismic analysis”, Earthquake Spectra, Vol. 14, No. 1, pp.153-156.
Mahadevan, S y A Haldar (1991), “Stochastic FEM-based evaluation of LRFD”, ASCE Journal of Structural Engineering, Vol. 117, No. 5, pp. 1393-1412.
Newmark, N M (1975), “Seismic design criteria for structures and facilities, Trans-Alaska
pipeline system”, Memorias, U.S. National Conference on Earthquake Engineering, Earthquake Engineering Institute, pp. 94-103.
Newmark, N M y W J Hall (1982), Earthquake spectra and design, Monograph Series, Earthquake Engineering Research Institute, Berkeley, California.
Reyes-Salazar, A, A Haldar y M R Romero-López (2000), “Force reduction factor for SDOF and MDOF”, Memorias, Joint Specialty Conference on Probabilistic Mechanics and Structural Reliability, ASCE, Notre Dame, Indiana, Artículo No. 063.
Reyes-Salazar, A (1997), “Inelastic seismic response and ductility evaluation of steel frames with fully, partially restrained and composite connections”, Tesis Doctoral, Department of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson, Estados Unidos.
Rosenblueth, E y H Contreras (1977), “Approximate design for multicomponent earthquakes”, ASCE Journal of Engineering Mechanics, Vol. 103, pp. 895-911.
Smeby, W y A Der Kiureghian (1985), “Modal combination rules for multicomponent
earthquake excitation”, Earthquake Engineering and Structural Dynamics, Vol. 13, pp. 1-12.
Wilson, E y M Button (1982), “Three-dimensional dynamic analysis for multicomponent earthquake spectra”, Earthquake Engineering and Structural Dynamics, Vol. 10, pp. 471-476.
Uang, C M (1991), “Establishing R (or Rw) and Cd factors for building seismic provisions”, ASCE Journal of Structural Engineering, Vol. 117, No. 1, pp. 19-28.
Wang, C H y Y K Wen (2000), “Seismic response of 3-D steel buildings with connection
fractures”, Memorias, 12th World Conference on Earthquake Engineering, Auckland, Nueva Zelanda, febrero, Artículo No. 814.
Wilson, E L, A Der Kiureghian y E P Bayo (1981), “A replacement for the SRSS Method in seismic analysis”, Earthquake Engineering and Structural Dynamics, Vol. 9, pp.187-194.
Yamamura, N y H Tanaka (1990), “Response analysis of flexible MDOF systems for multiplesupport seismic excitation”, Earthquake Engineering and Structural Dynamics, Vol. 19, pp. 345-357.