RESILIENCE SEISMIC ANALYSIS OF BUILDINGS
DOI:
https://doi.org/10.18867/ris.107.603Keywords:
Structural resilience, repair and recovery time, repair costsAbstract
In this paper, a probabilistic methodology to estimate fundamental decision variables of the theory of seismic resilience of buildings is presented: repair costs, repair time, recovery time and number of workers needed to perform the rehabilitation works. The proposed evaluation scheme is based on the recursive PERT method and is consistent with the probabilistic methodology for evaluating performance proposed by PEER and with the concept of resilience developed by MCEER. To illustrate the methodology, the evaluation of a seven-story reinforced concrete building with unreinforced masonry infill walls and designed in accordance with the Complementary Technical Norms – Seismic Design (2020) is presented. This structural system is typical of office buildings. The proposed methodology can be used to increase the seismic resilience of buildings, and to establish mitigation and recovery strategies not only for individual buildings, but also for groups of buildings.
Downloads
References
Almufti, I y M Willford (2013). “Resilience-based earthquake design initiative for the next generation of buildings: REDiTM Rating System”. Arup, San Francisco, CA, USA
Almufti, I y M Willford (2014). “The REDiTM rating system: A framework to implement resilience-based earthquake design for new buildings”. Memorias de la Tenth U.S. National Conference on Earthquake Engineering, Anchorage, AK, USA.
ASCE (2013). Seismic evaluation and retrofit of existing buildings, ASCE 41-13. American Society of Civil Engineers, Reston, VA, USA.
Aslani, H y E Miranda (2005). “Probabilistic earthquake loss estimation and loss disaggregation in buildings”. Reporte técnico No. 157. Department of Civil and Environmental Engineering John A. Blume, Stanford University, Stanford, CA, USA.
ATC (1985). Procedures for post-earthquake safety evaluation of buildings, ATC-20. Applied Technology Council, Redwood City, CA, USA.
Bruneau, M, S E Chang, R T Eguchi, G C Lee, T D O’ Rourke, A M Reinhorn, M Shinozuka, K Tierney, W A Wallace, y D von Winterfeldt (2003). “A framework to quantitatively assess and enhance the resilience of communities”. Earthquake Spectra, Vol. 19, No. 4, pp. 733-752. DOI: 10.1193/1.1623497
Caverzan, A, G Solomos (2014). “Review on resilience in literature and standards for critical built-infrastructure”. Informe sobre ciencia y política del JCR. Joint Research Centre, Institute for the Protection and Security of the Citizen, European Commission, Ispra, ITA.
Chang, G A, y J B Mander (1994). “Seismic energy-based fatigue damage analysis of bridge columns: Part 1-Evaluation of seismic capacity”. Reporte técnico No. NCEER-94-0006. University at Buffalo, State University of New York, Buffalo, NY, USA.
Cimellaro G P, A M Reinhorn y M Bruneau (2006a). “Framework for analytical quantification of disaster resilience”. Engineering Structures, Vol. 32, pp. 3639-3649. DOI:10.1016/j.engstruct.2010.08.008
Cimellaro G P, A M Reinhorn y M Bruneau (2006b). “Quantification of seismic resilience”. Memorias de la Eighth U.S., National Conference on Earthquake Engineering, San Francisco, CA, USA.
Figura 4. Esquema ilustrativo de un diagrama PERT (Richmond, 1968)
Comerio, M C (2006). “Estimating downtime in loss modeling”. Earthquake Spectra, Vol. 22, No. 2, pp. 349-365. DOI: 10.1193/1.2191017
Cornell, A y H Krawinkler (2000). “Progress and challenges in seismic performance assessment”. PEER Center News. Pacific Earthquake Engineering Research Center, University of California, Berkeley, Berkeley, CA, USA.
FEMA (2000). Prestandard and commentary for the seismic rehabilitation of buildings, FEMA 356. Federal Emergency Management Agency, Washington, DC, USA.
FEMA (2012a). Seismic performance assessment of buildings, Volume 1-Methology, FEMA P-58-1. Federal Emergency Management Agency, Washington, DC, USA.
FEMA (2012b). Seismic performance assessment of buildings, Volume 3-Supporting electronic materials and background documentation, FEMA P-58-3. Federal Emergency Management Agency, Washington, DC, USA.
GCDMX (2017a). Normas técnicas complementarias. Diseño de estructuras de concreto, No. 220-Bis, NTC-DEC. Gaceta Oficial de la Ciudad de México, CDMX, MEX.
GCDMX (2017b). Normas técnicas complementarias. Criterios y acciones para el diseño de edificaciones, No. 220-Bis, NTC-CADE. Gaceta Oficial de la Ciudad de México, CDMX, MEX.
GCDMX (2020). Normas técnicas complementarias para diseño por sismo con comentarios, No. 361, NTC-DS. Gaceta Oficial de la Ciudad de México, CDMX, MEX.
Giuffrè, A y P E Pinto (1970). “Il comportamento del cemento armato per sollecitazioni cicliche di forte intensità”. Giornale del Genio Civile, Roma, ITA.
Günay, S y K M Mosalam (2013). “PEER Performance-based earthquake engineering methodology, revisited”. Journal of Earthquake Engineering, Vol. 17, No. 6, pp. 829-858. DOI: 10.1080/13632469.2013.787377
Gutiérrez, J , G Ayala y J M Bairán (2019). “Evaluación del tiempo de recuperación de edificios de concreto reforzado dañados por sismo”. Memorias del XXII Congreso Nacional de Ingeniería Sísmica. Sociedad Mexicana de Ingeniería Sísmica, Monterrey, NL, MEX.
Kadysiewski, S y K M Mosalam (2009). “Modeling of unreinforced masonry infill walls considering in-plane and out-of-plane interaction”. Reporte técnico No. 2008/102. Pacific Earthquake Engineering Research, University of California, Berkeley, Berkeley, CA, USA.
Kohrs-Sansorny, C, F Courboulex, M Bour, y A Deschamps (2005). “A two-stage method for ground-motion simulation using stochastic summation of small earthquakes”. Bulletin of the Seismological Society of America, Vol. 95, No. 4, pp. 1387-1400. DOI: 10.1785/0120040211
Mazzoni, S, F McKenna, M H Scott, G L Fenves, et al. (2007). Open system for earthquake simulation (OpenSees). Pacific Earthquake Engineering Research Center, University of California, Berkeley, Berkeley, CA, USA.
Miranda, E, G Mosqueda, R Retamales y G Pekcan (2012). “Performance of nonstructural components during the 27 February 2010 Chile earthquake”. Earthquake Spectra, Vol. 28, No. S1, pp. S453-S471. DOI: 10.1193/1.4000032
Mitrani-Reiser, J (2007). “An ounce of prevention: Probabilistic loss estimation for performance-based earthquake engineering”. Tesis de doctorado. California Institute of Technology, Pasadena, CA, USA.
Moehle, J y G G Deierlein (2004). “A framework methodology for performance-based earthquake engineering”. Memorias de la Thirteenth World Conference on Earthquake Engineering, Vancouver, BC, CA.
Ordaz, M, J Arboleda, J, y S Singh (1995). “A scheme of random summation of an empirical Green´s function to estimate ground motions from future earthquakes”. Bulletin of the Seismological Society of America, Vol. 85, No. 6, pp. 1635-1647.
Porter, K A (2000). “Assembly-based vulnerability of buildings and its uses in seismic performance evaluation and risk-management decision-making”. Tesis de doctorado. Stanford University, Stanford, CA, USA.
Richmond, S B (1968). Operations Research for Management Decisions. John Wiley and Sons, USA.
Toyoda, T (2008). “Economic impacts of Kobe earthquake: A quantitative evaluation after 13 years”. Memorias de la Fifth International Information System for Crisis Response and Management (ISCRAM) Conference, ISCRAM, Washington, DC, USA.
Waller, M A (2001). “Resilience in ecosystemic context: Evolution of the concept”. American Journal of Orthopsychiatry, Vol. 71, No. 3, pp. 290–297.
Yang, T Y, J Moehle, B Stojadinovic y A Der Kiureghian (2009). “Seismic performance evaluation of facilities: Methodology and implementation”. Journal of Structural Engineering, ASCE, Vol. 135, No. 10, pp. 1146-1154. DOI: 10.1061/(ASCE)0733-9445(2009)135:10(1146)
Yoo, D Y (2016). “Repair time model for different building sizes Considering the earthquake hazard”. Tesis de maestría. California State University, Long Beach, CA, USA.