SEISMIC FRAGILITY OF WEAK FIRST-STORY RC STRUCTURES WITH CLUTCHING INERTER DAMPERS SUBJECTED TO NARROW-BAND SEISMIC EXCITATIONS

Authors

  • Miguel A. Jaimes
  • Mauro Niño
  • Francisco Antonio Godínez Rojano Instituto de Ingeniería UNAM

DOI:

https://doi.org/10.18867/ris.113.639

Keywords:

clutching inerter dampers, rotational inertia, clutch, weak first story, seismic excitations, narrow band, seismic fragility, mitigation, seismic demand, México

Abstract

This study evaluates the seismic fragility of weak first-story reinforced concrete (RC) structures retrofitted with clutching inerter dampers (CID) at their ground level when subjected to narrow-band seismic excitations. The main advantages brought about by the ground-level clutching inerters are the reductions in seismic demands (e.g., drifts, floor accelerations). This study shows that structures with inerters are reliable systems in terms of peak story drifts for large ground motions. The reliabilities of structures with inerter dampers at their ground level are in general higher for buildings under seismic intensities associated to incipient collapse limit states, especially for low-height buildings. The findings of this study could guide practicing engineers to use clutching inerter-based dampers in retrofitting ductile structures consisting of moment-resisting (RC) frames subjected to narrow-band earthquake excitations in regions such as Mexico City.

Downloads

Download data is not yet available.

References

AIJ (1997). Report on the Hanshin-Awaji Earthquake Disaster-Building Series. In Volume 1: Structural Damage to Reinforced Concrete Building, Architectural Institute of Japan (AIJ): Tokyo, Japan1997 (en Japonés).

AIJ (2011). Preliminary Reconnaissance Report of the 2011 Tohoku-Chiho Taiheiyo-Oki Earthquake, Architectural Institute of Japan (AIJ): Tokyo, Japan, pp. 105–111 (en Japonés). DOI: 10.1007/978-4-431-54097-7.

Alam, Z., Zhang, C., Samali, B (2020). The role of viscoelastic damping on retrofitting seismic performance of asymmetric rein-forced concrete structures. Earthq. Eng. Eng. Vib., Vol. 19, pp. 223-237. DOI: 10.1007/s11803-020-0558-x

Alavi, B., Krawinkler, H. (2004a) Behavior of moment-resisting frame structures subjected to near-fault ground motions. Earthq. Eng. Struct. Dyn. Vol. 33, No. 6, pp. 687-706. DOI: 10.1002/eqe.369

Alavi, B., Krawinkler, H. (2004b) Strengthening of moment-resisting frame structures against near-fault ground motion effects. Earthq. Eng. Struct. Dyn. Vol. 33, No. 6, pp. 707-722. DOI: 10.1002/eqe.370

Arakaki, T., Kuroda, H., Arima, F., Inoue, Y., Baba, K. (1999a). Development of seismic devices applied to ball screw: Part 1 Basic performance test of RD-series. AIJ J. Technol. Des., Vol. 5, pp. 239-244. DOI: 10.3130/aijt.5.239_1

Arakaki, T. , Kuroda, H. , Arima, F. , Inoue, Y. , Baba, K. (1999b). Development of seismic devices applied to ball screw: Part 2 Performance test and evaluation of RD-series. AIJ J. Technol. Des., Vol. 5, pp. 265-270.

Bray, J. D., y Travasarou, T. (2007). Simplified procedure for estimating earthquake-induced deviatoric slope displacements. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 4, pp. 381-392

Bouc, R. (1971). Modele mathematique d’hysteresis. Acustica, Vol. 21, pp. 16-25.

Candia, G., Macedo Jaimes, M.A., Magda-Verdugo, C. (2019). A new state of the art platform for probabilistic and deterministic seismic hazard assessment. Seismol. Res. Lett., Vol. 90, No. 6, pp. 2262-2275. DOI: 10.1785/0220190025

Cardenas, Y. (2020). Comportamiento Sísmico de Edificios de Concreto Reforzado con Planta Baja Débil Sujetos al Sismo del 19 de septiembre de 2017. Tesis Licenciatura, Facultad de Ingeniería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México.

Cornell, C.A. (1968). Engineering seismic risk analysis. Bull. Seismol. Soc. Am., Vol. 58, No. 5, pp. 1583-1606. DOI: 10.1785/BSSA0580051583

Der Kiureghian (2005). Non-Ergodicity and PEER’s framework formula. Earthq. Eng. Struct. Dyn., Vol. 34, No. 13, pp. 1643-1652. DOI: 10.1002/eqe.504

Gregorio, L. (2020). Evaluación de las Nuevas Disposiciones Normativas para el Diseño Sísmico de Edificios de Concreto Reforza-do con Planta Baja Débil. Tesis Licenciatura, School of Engineering, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México. http://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/7772

Goda, K., Hong, H.P., Lee, C.S. (2009). Probabilistic characteristics of seismic ductility demand of SDOF systems with Bouc-Wen hysteretic behavior. J. Earthq. Eng., Vol. 13, No. 5, pp. 600–622. DOI: 10.1080/13632460802645098

Esteva, L. (1968). Bases para la Formulación de Decisiones de Diseño Sísmico, Serie Azul 182, Instituto de Ingeniería, Universidad Nacional Autónoma de México: Ciudad de México, México. https://hdl.handle.net/20.500.14330/TES01000294559

Esteva, L. (1970). Regionalización Sísmica para Fines de Ingeniería, Serie Azul 246, Instituto de Ingeniería UNAM: Ciudad de México, México. https://aplicaciones.iingen.unam.mx/ConsultasSPII/DetallePublicacion.aspx?id=152

Galvis, F.A., Miranda, E., Heresi, P., Dávalos, H., Ruiz-García, J. (2020). Overview of collapsed buildings in Mexico City after the 19 September 2017 (Mw7. 1) earthquake. Earthq. Spectra, Vol. 36, No.2, 8755293020936694. DOI: 10.1177/8755293020936694

García-Ranz, F., Gómez, R. (1988). The Mexico Earthquake of 19 September 1985 -Seismic Design Regulations of the 1976 Mexico Building Code. Earthq. Spectra, Vol. 4, pp. 427-439.

Hall, J.F., Heaton, T.H., Halling, M.W., Wald, D.J. (1995) Near-source ground motion and its effects on flexible buildings. Earthq. Spectra 1995, Vol. 11, pp. 569-605. DOI: 10.1193/1.1585828

Hwang, J.S., Kim, J., Kim, Y.M. (2007). Rotational inertia dampers with toggle bracing for vibration control of a building structure. Eng. Struct., 29, 1201-1208. DOI: 10.1016/j.engstruct.2006.08.005

Jaimes, M.A., Reinoso, E., Ordaz, M. (2006). Comparison of methods to predict response spectra at instrumented sites given the magnitude and distance of an earthquake. J. Earthq. Eng., Vol. 10, No. 6, pp. 887-902. DOI: 10.1080/13632460609350622

Jaimes, M.A., Reinoso, E. (2006). Comparación del comportamiento de edificios en el valle de México ante sismos de subducción y de falla normal. Rev. Ing. Sísmica, No. 75, pp. 1-22.

Jaimes, M.A., Ramirez-Gaytán, A., Reinoso, E. (2015). Ground-motion prediction model from intermediate-depth intraslab earthquakes at the hill and lake-bed zones of Mexico City. J. Earthq. Eng., Vol. 19, pp. 1260–1278. DOI: 10.1080/13632469.2015.1025926

Jaimes, M.A., Lermo, J., García-Soto, A.D. (2016). Ground-motion prediction model from local earthquakes of the Mexico Basin at the hill zone of Mexico City. Bull. Seismol. Soc. Am., Vol. 106, No. 6, pp. 2532-2544. DOI: 10.1785/0120150283

Jaimes, M.A., Niño, M., Franco I., Trejo S., Godínez F., García-Soto, A.D. (2023). Seismic Risk of Weak First-Story RC Structures with Inerter Dampers Subjected to Narrow-Band Seismic Excitations. Buildings, Vol. 13 No. 4, 929. DOI: 10.3390/buildings13040929

Kent, D.C., Park, R. (1971). Flexural members with confined concrete. J. Struct. Div., Vol. 97, pp.1969-1990. DOI: 10.1061/JSDEAG.0002957

Kunnath, S.K., Mander, J.B., Fang, L. (1997). Parameter identification for degrading and pinched hysteretic structural concrete sys-tems. Eng. Struct., Vol. 19, No. 3, pp. 224-232. DOI: 10.1016/S0141-0296(96)00058-2

Lago, A., Trabucco, D., Wood, A. (2018). Damping Technologies for Tall Buildings: Theory, Design Guidance and Case Studies, Butter-worth-Heinemann: Oxford, UK. DOI: 10.1016/C2017-0-01327-7

Lazar, I.F., Neild, S.A., Wagg, D.J. (2014). Using an inerter-based device for structural vibration suppression. Earthq. Eng. Struct. Dyn. Vol. 43, pp. 1129-1147. DOI: 10.1002/eqe.2390

Makris, N., Kampas, G. (2016). Seismic protection of structures with supplemental rotational inertia. J. Eng. Mech. Vol. 142, 04016089. DOI: 10.1061/(ASCE)EM.1943-7889.0001152

Makris, N., Moghimi, G. (2019). Displacements and forces in structures with inerters when subjected to earthquakes. J. Struct. Eng, Vol. 145, No. 2, 04018260. DOI: 10.1061/(ASCE)ST.1943-541X.0002267

Málaga-Chuquitaype, C., Menendez-Vicente, C., Thiers-Moggia, R. (2019). Experimental and numerical assessment of the seismic response of steel structures with embragueed inerters. Soil Dyn. Earthq. Eng., Vol. 121, pp. 200–211. DOI: 10.1016/j.soildyn.2019.03.016

Mazzoni, S., McKenna, F., Scott, M.H., Fenves, G.L. (2006). OpenSees command language manual. Pac. Earthq. Eng. Res. Cent., Vol. 264, pp. 137–158.

McGuire, R.K. (2008). Probabilistic seismic hazard analysis: Early history. Earthq. Eng. Struct. Dyn., Vol. 37, pp. 329-338. DOI: 10.1002/eqe.765

McKenna, F. (2011). OpenSees: A framework for earthquake engineering simulation. Comput. Sci. Eng., Vol. 13, pp. 58-66. DOI: 10.1109/MCSE.2011.66

Moghimi, G., Makris, N. (2021). Seismic response of yielding structures equipped with inerters. Soil Dyn. Earthq. Eng. Vol. 141, 106474. DOI: 10.1016/j.soildyn.2020.106474

Montalvo-Arrieta, J.C., Sánchez-Sesma, F.J., Reinoso, E. (2002). A virtual reference site for the Valley of Mexico. Bull. Seismol. Soc. Am., Vol. 92, No. 5, pp. 1847-1854. DOI: 10.1785/0120010257

NTCS (2020). Technical Norms for Seismic Design. Gaceta Oficial de la Ciudad de México. 15 de diciembre 2017. Disponible en línea: https://www.smig.org.mx/archivos/NTC2017/normas-tecnicas-complementarias-reglamento-construcciones-cdmx-2017.pdf (acceso en 10 octubre 2020).

Ordaz, M., Reinoso, E., Singh, S.K., Vera, E., Jara, J.M. (1989). Espectros de Respuesta en Diversos Sitios del Valle ante Temblores Postulados en la Brecha de Guerrero. In Memorias del VIII Congreso Nacional de Ingeniería Sísmica and VII Congreso Nacional de Ingeniería Estructural, Acapulco, México, pp. A187–A198.

Ordaz, M., Reyes, C. (1999). Earthquake hazard in Mexico City: Observations versus computations. Bull. Seismol. Soc. Am., Vol. 89, pp. 1379-1383. DOI: 10.1785/BSSA0890051379

Reinoso, E., Ordaz, M. (1999). Spectral ratios for Mexico City from free-field recordings. Earthq. Spectra, Vol. 15, No. 2, pp. 273-295. DOI: 10.1193/1.1586041

Reyes, C. (1999). El Estado Límite de Servicio en el Diseño Sísmico de Edificios. Ph.D. Thesis, UNAM, Ciudad de Mexico, México. https://hdl.handle.net/20.500.14330/TES01000270872

Singh, S.K., Iglesias, A., Ordaz, M., Pérez-Campos, X., Quintanar, L. (2011). Estimation of ground motion in Mexico City from a repeat of the M∼7.0 Acambay earthquake of 1912. Bull. Seismol. Soc. Am., Vol. 101, pp. 2015–2028. DOI: 10.1785/0120100317

Singh, S.K. (1988). A study of amplification of seismic waves in the Valley of Mexico with respect to the hill zone site. Earthq. Spectra, Vol. 4, No. 4, pp. 653-674. DOI: 10.1193/1.1585496

Singh, S.K., Mena, E.A., Castro, R. (1988). Some aspects of source characteristics of the 19 September 1985 Michoacan earthquake and ground motion amplification in and near Mexico City from strong motion data. Bull. Seismol. Soc. Am. 1988, Vol 78, No. 2, pp. 451-477. DOI: 10.1785/BSSA0780020451

Smith, M.C. (2002). Synthesis of mechanical networks: The inerter. IEEE Trans. Autom. Control 2002, Vol. 47, pp. 1648-1662. DOI: 10.1109/TAC.2002.803532

Papageorgiou, C., y Smith, M. C. (2005). Laboratory experimental testing of inerters. In Proceedings of the 44th IEEE Conference on Decision and Control, pp. 3351-3356. DOI: 10.1109/CDC.2005.1582679

Patton, W.J. (1980). Mechanical Power Transmission, Prentice Hall: Upper Saddle River, NJ, USA, 1980.

Rosenblueth, E., Meli, R. (1986). The 1985 Mexico earthquake. Concr. Int., Vol. 8, pp. 23–34.

Rosenblueth, E., Arciniega, A. (1992). Response spectral ratios. Earthq. Eng. Struct. Dyn. Vol. 21, pp. 483-492. DOI: 10.1002/eqe.4290210603

Ruiz-García, J., Cárdenas, Y. (2021). Seismic performance assessment of weak first-storey RC buildings designed with old and new seismic provisions for Mexico City. Eng. Struct., Vol. 232, 111803. DOI: 10.1016/j.engstruct.2020.111803

Teran-Gilmore, A., Jirsa, J.O. (2007). Energy demands for seismic design against low-cycle fatigue. Earthq. Eng. Struct. Dyn., Vol. 36, pp. 383-404. DOI: 10.1002/eqe.663

Thiers-Moggia, R., Málaga-Chuquitaype, C. (2020). Seismic control of flexible rocking structures using inerters. Earthq. Eng. Struct. Dyn., Vol. 49, No. 14, pp. 1519-1538. DOI: 10.1002/eqe.3315

Thiers-Moggia, R., Málaga-Chuquitaype, C. (2021). Effect of base-level inerters on the higher mode response of uplifting structures. J. Eng. Mech., Vol. 147, No. 8, 04021041. DOI: 10.1061/(ASCE)EM.1943-7889.0001935

Valente, M., Milani, G. (2018). Alternative retrofitting strategies to prevent the failure of an under-designed reinforced concrete frame. Eng. Fail. Anal., Vol. 89, pp. 271-285. DOI: 10.1016/j.engfailanal.2018.02.001

Vamvatsikos, D., Cornell, C.A. (2002). Incremental dynamic analysis. Earthq. Eng. Struct. Dyn., Vol. 31, No. 3, pp. 491-514. DOI: 10.1002/eqe.141

Villaverde, R.V. (1991). Explanation for the numerous upper floor collapses during the 1985 Mexico City earthquake. Earthq. Eng. Struct. Dyn. 1991, Vol. 20, No. 3, pp. 223-2410. DOI: 10.1002/eqe.4290200303

Watson-Lamprey, J., Abrahamson, N. (2006). Selection of ground motion time series and limits on scaling. Soil Dyn. Earthq. Eng., Vol. 26, No. 5, pp. 477–482. DOI: 10.1016/j.soildyn.2005.07.001

Wen, Y.K. (1976). Method for random vibration of hysteretic systems. J. Eng. Mech. Div., Vol. 102, No. 2, pp. 249-263. DOI: 10.1061/JMCEA3.0002106

Published

2024-12-31

How to Cite

Jaimes, M. A., Niño, M., & Godínez Rojano, F. A. (2024). SEISMIC FRAGILITY OF WEAK FIRST-STORY RC STRUCTURES WITH CLUTCHING INERTER DAMPERS SUBJECTED TO NARROW-BAND SEISMIC EXCITATIONS. Journal Earthquake Engineering, (113), 26–54. https://doi.org/10.18867/ris.113.639

Issue

Section

Artículos

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.