SIMPLIFIED DESIGN PROCEDURE FOR SEISMIC ISOLATORS OF FREELY SUPPORTED RIGID EQUIPMENT IN MEXICO CITY BASED ON STABILITY CRITERIA
DOI:
https://doi.org/10.18867/ris.114.681Keywords:
rigid equipment, seismic isolators, simplified design, overturning, sliding, rocking, seismic response, Mexico CityAbstract
This study presents a simplified design procedure for seismic isolators used for rigid freestanding equipment in Mexico City. The seismic response of non-anchored equipment is evaluated, focusing on stability criteria such as preventing rocking, overturning, and sliding under seismic loads. The proposed methodology calculates the initial dimensions and characteristics of the isolators, ensuring that stability requirements are met. Using governing dynamic equations, the effectiveness of the simplified design is verified, demonstrating that the equipment remains stable without initiating rocking or sliding. This approach provides a reliable framework for designing seismic isolation systems for equipment that can withstand the seismic conditions of Mexico City.
Downloads
References
Agbabian, M. S., Ginell, W. S., Masri, S. F., y Nigbor, R. L. (1991). Evaluation of-earthquake damage mitigation methods for museum objects. Studies in conservation, 36(2), 111-120. https://doi.org/10.2307/1506335
Aslam, M., Scalise DT, Godden WG (1975). Sliding response of rigid bodies to earthquake motions: A report of an analytical and experimental study of the sliding response of rigid blocks under simultaneous horizontal and vertical earthquake accelerations. ERDA.
Bouc R. (1971). Modèle mathématique d’hystérésis. Acustica, 21, 16-25.
Choi, B., y Tung, C. D. (2002). Estimating sliding displacement of an unanchored body subjected to earthquake excitation. Earthquake Spectra, 18(4), 601-613. https://doi.org/10.1193/1.1516750
Housner, G. W. (1963). The behavior of inverted pendulum structures during earthquakes. Bulletin of the seismological society of America, 53(2), 403-417. https://doi.org/10.1785/BSSA0530020403
Jaimes, M. A., y Candia, G. (2018). Toppling of rigid electric equipment during earthquakes. Engineering Structures, 168, 229-242. https://doi.org/10.1016/j.engstruct.2018.04.083
Jaimes, M. A., y Candia, G. (2020). Seismic risk of sliding ground-mounted rigid equipment. Engineering Structures, 204, 110066. https://doi.org/10.1016/j.engstruct.2019.110066
Jones, N. P., y Shenton III, H. W. (1990). Generalized slide-rock response of rigid blocks during earthquakes. In Proc. Fourth US Nat. Conf. on Earthquake Engrg (pp. 20-24).
Konstantinidis, D., y Nikfar, F. (2015). Seismic response of sliding equipment and contents in base‐isolated buildings subjected to broadband ground motions. Earthquake engineering & structural dynamics, 44(6), 865-887. https://doi.org/10.1002/eqe.2490
Lin, S. L., MacRae, G. A., Dhakal, R. P., y Yeow, T. Z. (2015). Building contents sliding demands in elastically responding structures. Engineering Structures, 86, 182-191. https://doi.org/10.1016/j.engstruct.2015.01.004
Lopez-Garcia, D., y Soong, T. T. (2003a). Sliding fragility of block‐type non‐structural components. Part 1: unrestrained components. Earthquake engineering & structural dynamics, 32(1), 111-129. https://doi.org/10.1002/eqe.217
Lopez-Garcia, D., y Soong, T. T. (2003b). Sliding fragility of block‐type non‐structural components. Part 2: Restrained components. Earthquake engineering & structural dynamics, 32(1), 131-149. https://doi.org/10.1002/eqe.218
Makris, N., y Roussos, Y. S. (2000). Rocking response of rigid blocks under near-source ground motions. Geotechnique, 50(3), 243-262. https://doi.org/10.1680/geot.2000.50.3.243
Makris, N. (2014a). A half-century of rocking isolation. Earthquakes and Structures, 7 (6), 1187–1221. https://doi.org/10.12989/eas.2014.7.6.1187
Makris, N. (2014b). The role of the rotational inertia on the seismic resistance of free‐standing rocking columns and articulated frames. Bulletin of the Seismological Society of America, 104(5), 2226-2239. https://doi.org/10.1785/0120130064
Nikfar, F., y Konstantinidis, D. (2013). Sliding response analysis of operational and functional components (OFC) in seismically isolated buildings. In Proceedings 3rd specialty conference on disaster prevention and mitigation, Canadian society of civil engineering (CSCE), Montreal, QC.
NTCD-DS 2023 (2023). Norma Técnica Complementaria para el Diseño por Sismo. Gaceta Oficial de la Ciudad de México. 15 de diciembre 2023. Disponible en línea: https://www.isc.cdmx.gob.mx/directores-res/cursos-de-actualizacion-2022/normas-tecnicas-complementarias-2023 (acceso en 10 noviembre 2024).
Psycharis, I. N., y Jennings, P. C. (1983). Rocking of slender rigid bodies allowed to uplift. Earthquake engineering & structural dynamics, 11(1), 57-76. https://doi.org/10.1002/eqe.4290110106
Roussis, P. C., Pavlou, E. A., y Pisiara, E. C. (2008, October). Base-isolation technology for earthquake protection of art objects. In The 14th World Conference on Earthquake Engineering: Innovation Practice Safety.
Shao, Y., y Tung, C. C. (1999). Seismic response of unanchored bodies. Earthquake Spectra, 15(3), 523-536. https://doi.org/10.1193/1.1586056
Shenton III, H. W., y Jones, N. P. (1991). Base excitation of rigid bodies. I: Formulation. Journal of Engineering Mechanics, 117(10), 2286-2306. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:10(2286)
Vassiliou, M. F., y Makris, N. (2012). Analysis of the rocking response of rigid blocks standing free on a seismically isolated base. Earthquake Engineering & Structural Dynamics, 41(2), 177-196. https://doi.org/10.1002/eqe.1124
Wen, Y. K. (1976). Method for random vibration of hysteretic systems. Journal of the engineering mechanics division, 102(2), 249-263. https://doi.org/10.1061/JMCEA3.0002106
Whittaker A. (1999). Transformador derribado en Enerjisa patio de transformadores. (Izmit, Turquía) obtenido de < https://nisee.berkeley.edu/elibrary/ > The Earthquake Engineering Online Archive NISEE e Library.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal Earthquake Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



