APPLICATION OF THE HYBRID SIMULATION APPROACH ON MULTI-SCALE STRUCTURAL ANALYSIS FRAMES

Authors

  • Cesar Paniagua Lovera Instituto de Ingeniería, UNAM
  • A. Gustavo Ayala Milián Instituto de Ingeniería, UNAM
  • Gelacio Juárez Luna Universidad Autónoma Metropolitana Azcapotzalco

DOI:

https://doi.org/10.18867/ris.114.691

Keywords:

hybrid simulation, non-linear analysis, multi-scale problems, steel frames

Abstract

This paper presents a general two-scale procedure for the non-linear analysis of structures, taking advantage of hybrid simulation concepts. This proposal considers the coupling and transition between elements of different scales, reducing the degrees of freedom in global analysis by reproducing complex phenomena in local scale models. To manage the interaction of the local models, the hybrid simulation platform, OpenFresco, is proposed for distributing computational work and allowing the interaction between experimental setups and numerical analysis models using different software. The methodology is illustrated through the solution of a linear-elastic system subjected to gravitational and seismic loads, comparing the behavior and analysis time of simplified models, finite element models, and those of the proposed procedure. Finally, to further assess and validate the methodology, the paper presents the pushover analysis of a steel frame, obtaining its capacity curve and showing the tendency of the two-scale method to approximate the results of a refined non-linear finite element model but with a higher computational efficiency.

Downloads

Download data is not yet available.

References

Garusi, E. y Tralli, A. (2002). “A hybrid stress-assumed transition element for solid-to-beam and plate-to-beam connections”. Computers & Structures, Vol 80, No 2, pp. 105–115. DOI: 10.1016/S0045-7949(01)00172-9

Huang, X., y Kwon, O. (2020). "A generalized numerical/experimental distributed simulation framework”. Journal of Earthquake Engineering, Vol. 24, No 4, pp. 682-703. DOI: 10.1080/13632469.2018.1423585

Huang, Y., Schellenberg, A., Mahin, S., y Fenves, G. (2008), “Coupling FE software through adapter elements: A novel use of user defined elements”, 10th International LS-DYNA Users Conference, Detroit, MI, Estados Unidos.

Kanber B. y Bozkurt O. (2006). “Finite element analysis of elasto-plastic plate bending problems using transition rectangular plate elements”. Acta Mechanica Sinica, Vol. 22, pp. 355-365. DOI: 10.1007/s10409-006-0012-y

Kwon, O-S., Nakata, N., Elnashai, A.S. y Spencer, B.F (2005). “A Framework for Multi-site Distributed Simulation and Application to Complex Structural Systems”. Journal of Earthquake Engineering, Vol. 9, No 5, pp. 741-753. DOI: 10.1080/13632460509350564

Li, Z., Chan, T. H., Yu, Y. y Sun, Z. (2009). “Concurrent multi-scale modeling of civil infrastructures for analyses on structural deterioration—part I: Modeling methodology and strategy”. Finite Elements in Analysis and Design, Vol. 45, No 11, pp. 782–794. DOI: 10.1016/j.finel.2009.06.013

Maekawa, K., Ishida, T. y Kishi, T. (2009). Multi-scale Modeling of Structural Concrete. Primera ed. Taylor & Francis. DOI: 10.1201/9781482288599

McKenna, F., Fenves, G. y Scott M. (2000), Open System for Earthquake Engineering Simulation, University of California, Berkeley CA. Estados Unidos. http://opensees.berkeley.edu

Mourlas, C., Gravett, D. Z., Markou, G., y Papadrakakis, M. (2019). “Investigation of the soil structure interaction effect on the dynamic behavior of multistorey RC buildings”. VIII international conference on computational methods for coupled problems in science and engineering, Coupled Problems CIMNE, Barcelona, España.

Paniagua, C. y Ayala, A.G. (2023), “Two scale seismic analysis of masonry infill concrete frames through hybrid simulation”. Earthquakes and Structures, Vol. 24, No 6, pp 393-404. DOI: 10.12989/eas.2023.24.6.393

Park, J., Strepelias, E., Stathas, N., Kwon, O. S., y Bousias, S. (2021). “Application of hybrid simulation method for seismic performance evaluation of RC coupling beams subjected to realistic boundary condition. Earthquake Engineering & Structural Dynamics, Vol. 50, No 2, pp. 375-393. DOI: 10.1002/eqe.3335

Pegon, P. y Pinto, A.V. (2000). “Pseudo-dynamic testing with substructuring at the ELSA Laboratory”. Earthquake engineering & structural dynamics, Vol. 29, pp. 905-925. DOI: 10.1002/1096-9845(200007)29:7%3C905::AID-EQE941%3E3.0.CO;2-P

Poliotti, M., Bairán, J.-M., y Möller, O. (2021). “A variable order framework for 3d nonlinear analysis of reinforced concrete frames under general loading”. Engineering Structures, Vol. 242, No 112536. DOI: 10.1016/j.engstruct.2021.112536

Przemieniecki, J. S. (1985). Theory of Matrix Structural Analysis. Primera ed. Dover Publications

Schellenberg, A. H. (2009), “Advanced implementation of hybrid simulation”, PEER Reporte 2009/104 Earthquake Engineering Research Center, University of California, Berkeley, CA, Estados Unidos. https://peer.berkeley.edu/publications/2009-104

Schellenberg, A., Mahin, S. A. y Fenves, G. L. (2006), “Application of an experimental software framework for international hybrid simulation”, 4th International Conference on Earthquake Engineering, Taipei, Taiwan.

Schellenberg, A., Mahin, S. A. y Fenves, G. L. (2007), “A software framework for hybrid simulation of large structural systems”, ASCE Structural Engineering Research Frontiers Congress, Reston, VA, Estados Unidos.

Takahashi, Y. y Fenves, G. L. (2006). “Software framework for distributed experimental–computational simulation of structural systems”. Earthquake engineering & structural dynamics, Vol. 35, No 3, pp. 267-291. DOI: 10.1002/eqe.518

Takeda, T., Sozen, M. A. y Nielsen, N. N. (1970). “Reinforced concrete response to simulated earthquakes”. Journal of the structural division, Vol. 96, No 12, pp. 2557–2573. DOI: 10.1061/JSDEAG.0002765

Taucer, F., Spacone, E. y Filippou, F. C. (1991). “A fiber beam-column element for seismic response analysis of reinforced concrete structures”, Reporte UCB/EERC-91/17. Earthquake Engineering Research Center, University of California, Berkeley, CA, Estados Unidos. https://nisee.berkeley.edu/elibrary/Text/237794

Wang, F., Xu, Y. y Qu, W. (2014). “Mixed-dimensional finite element coupling for structural multi-scale simulation”. Finite Elements in Analysis and Design, Vol. 92, pp. 12–25. DOI: 10.1016/j.finel.2014.07.009

Weinan, E. (2011), Principles of Multiscale Modeling. Primera ed. Cambridge University Press. https://assets.cambridge.org/97811070/96547/frontmatter/9781107096547_frontmatter.pdf

Yue, J. G., Fafitis, A., Qian, J., y Lei, T. (2011), “Application of 1D/3D finite elements coupling for structural nonlinear analysis”, Journal of Central South University of Technology, Vol. 18, No 3, pp. 889-897. DOI: 10.1007/s11771-011-0778-3

Published

2025-09-30

How to Cite

Paniagua Lovera, C., Ayala Milián, A. G., & Juárez Luna, G. (2025). APPLICATION OF THE HYBRID SIMULATION APPROACH ON MULTI-SCALE STRUCTURAL ANALYSIS FRAMES. Journal Earthquake Engineering, (114), 1–18. https://doi.org/10.18867/ris.114.691

Issue

Section

Artículos

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.