EARTHQUAKE-RESISTANT AND ENVIRONMENTAL ADVANTAGES OF DIAGRID SYSTEMS IN HIGH SEISMICITY ZONES

Authors

  • Arturo Quiroz Ramírez Universidad Autónoma Metropolitana
  • Amador Terán Gilmore Universidad Autónoma Metropolitana
  • Montserrat Serrano Medrano Universidad Michoacana de San Nicolás Hidalgo

DOI:

https://doi.org/10.18867/ris.97.479

Abstract

A comparison of the seismic response and environmental impact potential of two building systems is presented. Both buildings have 24 floors and a total height of 114 meters, and are in the Lake Zone of Mexico City. The first building, denominated traditional, uses composite (steel and reinforced concrete) moment-resisting frames and concentric diagonals. The second one, denominated innovative, is structured with steel perimetral diagonal grids and steel frames. Despite its lower weight, and smaller lateral strength and stiffness, the innovative system exhibits a superior seismic performance characterized by light damage on approximately 8% of its seismic-resistant elements for the design seismic excitation. Also, the construction of the innovative system reduces in two thirds the emissions of greenhouse effect gases with respect to its traditional counterpart. The example presented herein provides an idea of the benefits that the use of innovative systems can bring to the Mexican design and building practices.

Downloads

Download data is not yet available.

Author Biography

Arturo Quiroz Ramírez, Universidad Autónoma Metropolitana

Estudiante en estancia posdoctoral, Universidad Autónoma Metropolitana, unidad Azcapotzalco

References

Applied Technology Council, (1998), “FEMA 356. Prestandard and commentary for the seismic rehabilitation of buildings”, Redwood City, CA. https://ascelibrary.org/doi/abs/10.1061/40753%28171%29177

ATHENA (2016), “ATHENA” Sustainable Materials Institute, Merrickville, Canada. Disponible en: http://www.athenasmi.org

Bertero R., y Bertero V. (1992), “Tall reinforced concrete buildings: conceptual earthquake-resistant design methodology”, Report

UCB/EERC-92/16, University of California at Berkeley.

BMDSF (2000), “Base Mexicana de Sismos Fuertes 1969-1999”, CD, Instituto de Ingeniería, UNAM.

BRE (1990), “BREEAM: Building Research Establishment Environmental Assessment Method”, Building Research Establishment, Reino Unido. Disponible en: https://www.breeam.com

CADIS (2016), “Mexicaniuh, Base de datos Regional de Inventarios de Ciclo de Vida”, Centro de Análisis de Ciclo de Vida y Diseño Sustentable, marzo, México. Disponible en: http://www.centroacv.mx/#

CEMEX (2015), “Sustainable development report”, Disponible en: http://www.cemex.com/SustainableDevelopment/GlobalReports.aspx

Coeto G. (2008), “Control de la respuesta sísmica de edificios altos por medio de un sistema de contravientos desadheridos”, Tesis de maestría, Universidad Autónoma Metropolitana.

Ecoinvent (2015), “Ecoinvent 3.1: LCI database with world´s transparency and consistency”, Ecoinvent, Zurich, Switzerland, Disponible en: http://www.ecoinvent.org/home.html.

Edemskaya E., y Agkathidis, A. (2016), “Rethinking Complexity: Vladimir Shukhov’s Steel Lattice Structures”, Journal of the International Association for Shell and Spatial Structures (J. IASS), Vol. 57 (2016) No. 3 September n. 189, 201-208. http://dx.doi.org/10.20898/j.iass.2016.189.806

Gervasio H. (2010), “La sustentabilidad del Acero y las Estructuras Metálicas”, Revista Acero Latinoamericano, pp. 18-25. Disponible en: http://icha.cl/wp-content/uploads/2014/12/LA-Sustentabiliadad-del-Acero-y-Las-Estructuras-Met%C3%A1licas.pdf.

Gobierno del Distrito Federal (2004), “Normas técnicas complementarias para diseño por sismo”, Gaceta Oficial del Gobierno del D.F., TOMO II, No. 103-BIS, 55-77. Disponible en: http://www.ordenjuridico.gob.mx/Estatal/DISTRITO%20FEDERAL/Manuales/DFMAN33.pdf.

González Maza F. (2012), “Análisis del ciclo de vida de materiales de construcción convencionales y alternativos”, Tesis para obtener el grado de arquitecto, Facultad del Hábitat, Universidad Autónoma de San Luis Potosí, diciembre, México.

GreenDelta (2006), “openLCA: Open Life Cycle Assessment”. Disponible en: http://www.openlca.org/openLCA

Hasanbeigi, A., Rojas Cárdenas J. C., Price, L., Triolo, R. (2015). “Comparison of Energy-Related Carbon Dioxide Emissions Intensity of the International Iron and Steel Industry: Case Studies from China, Germany, Mexico, and the United States”, Reporte LBNL-1004069, Ernest Orlando Lawrence Berkeley National Laboratory, diciembre. Disponible en: http://eetd.lbl.gov/publications/comparison-of-energy-related-carbon

ISE (2011), “A short guide to embodied carbon in building structures”, IStructE Ltd., Institution of Structural Engineers, septiembre, ISBN: 1906335192, 9781906335199, Reino Unido. Disponible en: https://shop.istructe.org/a-short-guide-to-embodied-carbon-in-building-structures.html

ISO (2015), “ISO14001:2015”, International Organization for Standardization, September. Disponible en: http://www.nueva-iso-14001.com/pdfs/FDIS-14001.pdf

Kim J., and Lee Y.H. (2010), “Seismic performance evaluation of diagrid system buildings”, Proceedings of the 2nd Specialty Conference on Disaster Mitigation, Paper DM-04-1.

Kim J., and Lee Y.H. (2012), “Seismic performance evaluation of diagrid system buildings”, The Structural Design of Tall and Special Buildings, 21, 736-749. DOI: 10.1002/tal.643

Kohrs-Sansorny C., Courboulex F., Bour M., y A Deschamps (2005), “A two-stage method for ground- motion simulation using stochastic summation of small earthquakes”, Bulletin of the Seismological Society of America, 95(4), 1387–1400. DOI: 10.1785/0120040211

Mele E., Toreno M., Brandonisio G., y De Luca A. (2014), “Diagrid structures for tall buildings: case studies and design considerations”, The Structural Design of Tall and Special Buildings, 23, 124- 145. DOI: 10.1002/tal.1029

Moon, K.S. (2008), “Sustainable structural engineering strategies for tall buildings”, The Structural Design of Tall and Special Buildings, 17, 895-914. DOI: 10.1002/tal.475

Montiel M.A., y Terán A. (2013), “Comparative reliability of two twenty-four story braced buildings: traditional versus innovative”, The Structural Design of Tall and Special Buildings, 22 (8), 635-654. DOI: 10.1002/tal.716

Moon K-S., Connor J.J. and Fernandez J.E. (2007), “Diagrid structural systems for tall buildings: characteristics and methodology for preliminary design”, The Structural Design of Tall and Special Buildings, 16, 205-230. DOI: 10.1002/tal.311

Nassar A., y Krawinkler H. (1991), “Seismic demands for SDOF and MDOF systems”, Report No. 95, The John A. Blume Earthquake Engineering Center, Stanford University. Disponible en: http://purl.stanford.edu/qt582bc4669

NMX-SAA-14044-IMNC-2008 (2009), “Gestión Ambiental - Análisis del Ciclo de Vida – Requisitos y Directrices”, Diario Oficial de la Federación, febrero. Disponible en: http://dof.gob.mx/nota_detalle.php?codigo=5080493&fecha=16/02/2009

Perea T., Leon T. R., Denavit M., y Hajjar J.F. (2010) “Experimental tests on cyclic beam-column interaction strength of concrete-filled steel tubes”, Proc. of the 9th US National and 10th Canadian Conference on Earthquake Engineering. Disponible en: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=4F79A19F9E178801A87B3D0EE0E48AE6?doi=10.1.1.727.8632&rep=rep1&type=pdf

Pessiki S.T. (1990), “Seismic behavior of beam-column joints”, Memorias de la Fourth U. S. National Conference on Earthquake Engineering, vol. 2, Palm Springs, Cal., pp. 707-716. Disponible en: http://www.iitk.ac.in/nicee/IITK-GSDMA/EQ31.pdf

Quiroz-Ramírez, A., Arroyo, D., Terán-Gilmore, A., y Ordaz, M. (2014), “Evaluation of the Intensity Measure Approach in Performance-based Earthquake Engineering with Simulation Ground Motions”, Bulletin of the Seismological Society of America, Vol. 104, No. 2, Abril, p.p. 669-683. https://doi.org/10.1785/0120130115

ReCiPe (2012), “ReCiPe Mid/Endpoint method, version 1.08”, ReCiPe, CML/Universidad de Leiden, Holland, diciembre. Disponible en: http://www.rivm.nl/en/Topics/L/Life_Cycle_Assessment_LCA/ReCiPe

Sathre R. y González-García S. (2014), “Life cycle assessment (LCA) of wood-based building materials”, Eco-efficient Construction and Building Materials: Life Cycle Assessment (LCA), eco-labeling and case studies, Woodhead Publishing Series in Civil and Structural Engineering, No. 14, Cambridge, Reino Unido, pp. 311-337. https://doi.org/10.1533/9780857097729.2.311

SimaPRO (2016), “LCA software package”, U.S. Department of Energy, U.S. Disponible en: https://simapro.com/

Struble L y Godfrey J. (2004), “How sustainable is concrete?”, Proceedings of the International Workshop on Sustainable Development and Concrete Technology, mayo, Beijing, China, pp. 201-211. Disponible en: http://www.ctre.iastate.edu/pubs/sustainable/strublesustainable.pdf

Teran A., y Coeto G. (2011), “Displacement-Based Preliminary Design of Tall Buildings Stiffened with a System of Buckling-Restrained Braces”, Earthquake Spectra, 27 (1), 153-182. https://doi.org/10.1193/1.3543854

Teran A. (2004), “On the use of spectra to establish damage control in regular frames during global predesign”, Earthquake Spectra, 20(3), 1-26. https://doi.org/10.1193/1.1775795

U.S. Green Building Council (1993), “LEED: Leadership in Energy and Environmental Design”, United States Green Building Council. Disponible en: http://leed.usgbc.org/leed.html

U.S.G.S United States Geological Service (2002), “Seismicity of Russia and the Former Soviet Union”, Disponible en: https://earthquake.usgs.gov/data/russia_seismicity/bibliography.php

Published

2018-01-04

How to Cite

Quiroz Ramírez, A., Terán Gilmore, A., & Serrano Medrano, M. (2018). EARTHQUAKE-RESISTANT AND ENVIRONMENTAL ADVANTAGES OF DIAGRID SYSTEMS IN HIGH SEISMICITY ZONES. Journal Earthquake Engineering, (97), 64–83. https://doi.org/10.18867/ris.97.479

Issue

Section

Artículos

Metrics

Most read articles by the same author(s)

1 2 > >>