GENERATION OF SYNTHETIC ACCELEROGRAMS USING WAVELETS, ORIENTED TO GEOTECHNICAL-STRUCTURAL APPLICATIONS
DOI:
https://doi.org/10.18867/ris.98.480Abstract
In this work, a procedure to generate synthetic accelerograms using wavelets is presented. General criteria and its applicability are presented, as well as conclusions of practical use to generate synthetic accelerograms for use in geotechnical or structural analysis and soil-structure interaction. Synthetic accelerograms are generated for different types of soils (rigid soils and soft soils of Mexico City and Caleta de Campos, Michoacán) and for several objective spectra as they are: normative design spectra, uniform hazard spectra and spectra derived of envelopes of seismic records. The stability of the method to generate synthetic accelerograms associated to any objective spectrum is shown, in addition to demonstrating that the modifications suffered by the Fourier spectra as well as the Arias intensities when this method is used to adjust real signals are minimal. With the examples shown in this work, it is concluded that the generation of the accelerograms employing wavelets is very stable and starting from the same seismic records it can generate synthetic accelerograms for different objective spectra.Downloads
References
Arias A (1970), “A measure of earthquake intensity”, en Hansen RJ (ed) Seismic design for nuclear power plants. MIT Press, Cambridge MA, pp. 438–483.
Aki K (1967), “Scaling law of seismic spectrum”, Journal of Geophysical Research, Vol. 72, No. 4, pp. 1217-1231. DOI: 10.1029/JZ072i004p01217
Al Atik, L, y N Abrahamson (2010), “An improved method for nonstationary spectral matching”, Earthquake Spectra, Vol. 26, No. 3, pp. 601-617, DOI: 10.1193/1.3459159
Ayes, J C (2016), “Sismología y su aplicación en los análisis de respuesta de sitio”, Examen general de conocimientos para obtener el grado de maestría en ingeniería geotecnia, Posgrado en Ingeniería, UNAM.
Ayes, J C y F A Flores (2015), “Time-history modification and spectral matching oriented to dynamic geotechnical analysis”, en Fundamentals to Applications in Geotechnics, Proceedings of the 15th Pan-American Conference on Soil Mechanics and Geotechnical Engineering, 15-18 de noviembre de 2015, Buenos Aires, Argentina, IOS Press Eds., pp. 1033-1040, DOI: 10.3233/978-1-61499-603-3-1033.
ASCE/SEI 7-05 (2006), Minimum design loads for buildings and other structures, American Society of Civil Engineers, ISBN 0-7844-083, pp. 1-9.
BMSF (1996), Base mexicana de datos de sismos fuertes, Actualización de los catálogos de estaciones a 1995 y acelerogramas a 1994.
Bal, I, E Smyrou, P Tasiopoulou y G Gazetas (2014), “Determination of liquefaction in time domain using wavelet analysis”. Proceedings of the 10th National Conference in Earthquake Engineering. DOI: 10.4231/D3JW86N60.
Bogiatzis, P y M Ishii (2015), “Continuous wavelet decomposition algorithms for automatic detection of compressional- and shear-wave arrival times”, Bulletin of the Seismological Society of America, Vol. 105, No. 3, pp. 1628-1641, DOI: 10.1785/0120140267
Bommer, J y B Acevedo (2008), “The use of real earthquake accelerograms as input to dynamic analysis”, Journal of Earthquake Engineering, Vol 8, No. 1, pp. 43-91. DOI:10.1080/13632460409350521
Cecini, D y A Palmeri (2015), “Spectrum-compatible accelerograms with harmonic wavelets”, Computers y Structures, Vol. 147, pp. 26–35, DOI: 10.1016/j.compstruc.2014.10.013
Comisión Federal de Electricidad, CFE (2008), Manual de diseño de obras civiles. Diseño por sismo, México.
Comisión Federal de Electricidad, CFE (2015), Manual de diseño de obras civiles. Capítulo C.1.3 Diseño por sismo, México.
Converse, M y G Brady (1992), BAP basic strong-motion accelerogram processing software, v.1.0 Department of the Interior, Geological Survey, Open-File Report 92-296-A.
Federal Emergency Management Agency, FEMA P-58-1 (2012), Seismic performance assessment of buldings, volume 1 – Methodology, septiembre de 2012.
Gasparini, D y E Vanmarcke (1979), Simulated earthquake motions compatible with prescribed response spectra. Cambridge, Massachusetts: Evaluation of Seismic Safety of Buildings Report No. 2, Department of Civil Engineering, MIT.
Giaralis, A y T Spanos (2009), “Wavelet-based response spectrum compatible synthesis of accelerograms-Eurocode application (EC8)”, Soil Dynamics and Earthquake Engineering, Vol. 29, No. 1, pp. 219-235, DOI: 10.1016/j.soildyn.2007.12.002
Hancock, J, J Watson-Lamprey, N Abrahamson, J Bommer, A Markatis, E McCoy y R Mendis (2006), “An improved method of matching response spectra of recorded earthquake ground motion using wavelets”, Journal of Earthquake Engineering, Vol. 10, pp. 67-89, DOI: 10.1080/13632460609350629
Hartzell, S H (1978), “Earthquake aftershocks as Green's functions”, Geophysical Research Letters, Vol. 5, No. 1, pp. 1-4, DOI: 10.1029/GL005i001p00001
Kaul, M K (1978), “Spectrum consistent time-history generation”, Journal of Engineering Mechanics ASCE, Vol. 104, No. 4, pp. 781-788.
Kohrs-Sansorny, C, F Courboulex, M Bour y A Deschamps (2005), “A two-stage method for ground-motion simulation using stochastic summation of small earthquakes”, Bulletin of the Seismological Society of America, Vol. 95, No. 4, pp. 1387-1400, DOI: 10.1785/0120040211
Kottke, A, X Wang y E Rathje (2013), Technical Manual for Strata. Texas: Department of Civil, Architectural and Environmental Engineering, University of Texas.
Lilhanand, K, y W S Tseng (1988), “Development and application of realistic earthquake time histories compatible with multiple-damping design spectra”, Proceedings of Ninth World Conference on Earthquake Engineering, Vol. II, pp. 819-824.
Naumoski N (2001), Program SYNTH – Generation of artificial accelerograms compatible with target spectrum. Dept. of Civil Engineering, University of Ottawa, Ontario, 18.
NTCS-04 (2004), Normas Técnicas Complementarias para Diseño por Sismo, Reglamento de Construcciones para el Distrito Federal. Gaceta Oficial del Distrito Federal.
Ordaz, M y C Reyes (1999), "Earthquake hazard in Mexico City: Observations versus computations", Bulletin of the Seismic Society of America, Vol. 89, No. 5, pp. 1379-1383.
Ordaz, M, J Arboleda y S K Singh (1995), “A scheme of random summation of an empirical Green´s function to estimate ground motions from future large earthquakes”, Bulletin of the Seismological Society of America, Vol. 85, No. 6, pp. 1635-1647.
Pérez-Yáñez C, L Ramírez-Guzmán, A L Ruiz, R Delgado, M A Macias, H Sandoval, L Alcantara y A Quiroz (2014), “Strong ground motion database system for the mexican seismic network”, American Geophysical Union, Fall Meeting 2014, San Francisco, CA, diciembre, pp. 14-19.
RSCTH: software program for generating artificial earthquake data. http://civil.eng.buffalo.edu/engseislab/products.htm, Engineering Seismology Laboratory, State University and Buffalo, New York
Sabbetta, F y A Pugliese (1996), “Estimation of response spectra and simulation of nonstationary ground motions”. Bulletin of the Seismological Society of America, Vol. 86. No. 2, pp. 337 – 352, April.
Silva, W J, y K Lee (1987), “WES RASCAL Code for Synthetizing Earthquake Ground Motions”, en: State of the Art for Assessing Earthquake Hazards in the United States, Artículo S-73-1, Reporte 24, Department of the, US Army Corps of Engineers.
Spanos P D, F Kong F, J Li y I A Kougioumtzoglou (2015), “Harmonic wavelets based excitation-response relationships for linear systems: A critical perspective”, Probabilistic Engineering Mechanics, DOI: 10.1016/j.probengmech.2015.09.021
Zhang, Y, F Zhao y C. Yang (2015), “Generation of nonstationary ground motions compatible with multi-damping response spectra”. Bulletin of the Seismological Society of America, Vol. 105. No. 1, pp. 341 – 353, DOI: 10.1785/0120140038