RESPUESTA SÍSMICA DE CONEXIONES DE ACERO HACIA EL EJE MENOR DE LA COLUMNA

Autores/as

  • Alejandro Santiago Flores
  • Edgar Tapia Hernández

DOI:

https://doi.org/10.18867/ris.109.631

Palabras clave:

pruebas experimentales;, conexiones de acero;, pandeo local

Resumen

En este artículo se discute la respuesta sísmica de marcos de acero con conexiones de viga I al eje menor de la columna. Se realizaron pruebas experimentales sometidas a demandas cuasi-estáticas en escala natural. Las conexiones reportan una concentración de daño gobernada por el pandeo local de los patines, por lo que se analiza la distribución de esfuerzos y el fundamento de los criterios normativos para mejorar su respuesta. Los resultados experimentales se comparan considerando un modelo de elemento finito y modelos detallados de plasticidad distribuida en el programa OpenSees. Adicionalmente, se obtuvo la curva envolvente de las pruebas para calibrar los criterios normativos para la predicción inelástica en manuales especializados de análisis no lineal.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

AISC-341 (2016), Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341-16. American Institute of Steel Construction. Chicago, IL, Estados Unidos.
AISC-358 (2016), Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, ANSI/AISC 358-16. American Institute of Steel Construction. Chicago, IL, Estados Unidos.
ASCE 41 (2013), Seismic Evaluation and Retrofit of Existing Buildings, Standard ASCE/SEI 41-13, American Society of Civil Engineers. Reston, VA, Estados Unidos.
ASCE 41 (2017), Seismic Evaluation and Retrofit of Existing Buildings, Standard ASCE/SEI 41-17, American Society of Civil Engineers. Reston, VA, Estados Unidos.
ASTM E3 (2017), Standard Practice for Preparation of Metallographic Specimens. American Standard Testing and Materials, ASTM, American National Standard, West Conshohocken, PA, Estados Unidos.
ASTM E8/E8M-13 (2013), Standard Test Methods for Tension Testing of Metallic Materials, American Society for Testing and Materials, ASTM, American National Standard, West Conshohocken, PA, Estados Unidos.
AWS D1.8 (2016), Structural Welding Code – Seismic Supplement, An American National Standard, AWS D1.8/D1.8 M, American Welding Society D1 Committee on Structural Welding, 3a edición.
Chen, S.J. (1999), “Design of Ductile Steel Beam-to-Column Connections for Seismic Resistance,” Workshop on Design Technologies of Earthquake-Resistant Moment Resisting Connections, Taipei, Taiwan.
Choi, J., Stojadinovic, B., and Goel, S.C. (2000), Parametric Tests on the Free Flange Connection, Report SAC/BD-00/02, SAC Joint Venture.
CTBUH (2021), “Council on Tall Buildings and Urban Habitat”, Página de internet. Estados Unidos, consultado 1 de abril 2001, <https://www.skyscrapercenter.com/buildings>.
Engelhardt M.D. y Sabol T.A. (1998), “Reinforcing of Steel Moment Connections with Cover Plates: Benefits and Limitations”, Engineering Structures, Vol. 20, No. 4-6, pp. 510-20, Elsevier, London. DOI: https://doi.org/10.1016/S0141-0296(97)00038-2
FEMA-355F (2000), State of the Art Report on Performance Prediction and Evaluations of Steel Moment Frame Buildings, FEMA-355F, prepared by the SAC Joint Venture for the Federal Emergency Management Agency, Washington, DC.
FEMA 356 (2000), “Prestandard and commentary for the seismic rehabilitation of buildings”, prepared by the American Society of Civil Engineers for the Federal Emergency Management Agency. Washington, D.C. United States of America. November.
Gilton C.S., Chi, B. y Uang C.M. (2000), “Cyclic Testing of a Free Flange Moment Connection”, SAC Report 00/19, SAC Joint Venture.
Kim S-E. & Truong V-H. (2020), Reliability Evaluation of Semirigid Steel Frames Using Advanced Analysis, Journal of Structural Engineering ASCE, Vol. 146, Issue 5. DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0002616
Lee D-S., Kishiki S., Yamada S., Ishida T. y Jiao Y. (2019). Experimental Study of Low-Cycle Fatigue Behavior of a Welded Web Connection in Steel Moment-Resisting Frames, Earthquake Spectra, Volume 34, Issue 4. DOI: https://doi.org/10.1193/062617EQS131M
Lignos D.G., Hartloper A., Elkady A., Hamburger R. y Deierlein G.G. (2018), Revised ASCE-41 Modeling Recommendations for Moment-Resisting Frame Systems, Proceedings of the 11th U.S. National Conference on Earthquake Engineering, Earthquake Engineering Research Institute, Los Angeles, C.A. June.
Maison B.F., y Speicher M.S. (2016), Loading Protocols for ASCE 41 Backbone Curves, Earthquake Spectra, Vol. 32, No. 4, pp. 2513-2532. November. DOI: https://doi.org/10.1193/010816EQS007EP
Mazzoni, S., F. McKenna, M. Scott, M y G. Fenves (2006). Open system for earthquake engineering simulation, user command-language manual, Report NEES grid-TR 2004-21. Pacific Earthquake Engineering Research, University of California, Berkeley, CA.
Noel S. y Uang C.M. (1996), “Cyclic Testing of Steel Moment Connections for the San Francisco Civic Center Complex”, Report TR-96/07, Division of Structural Engineering, U. of California, San Diego, CA.
NTC-DCEA (2020), Normas Técnicas Complementarias para el Diseño y Construcción de Estructuras de Acero y sus Comentarios, Gaceta Oficial de la Ciudad de México, Vigésimo primera época, No. 361, junio.
NTC-DS (2020), Normas Técnicas Complementarias para el Diseño por Sismo y sus Comentarios, Gaceta Oficial de la Ciudad de México, Vigésima primera época, No. 361, junio.
Osteraas J. S.M. & Krawinkler H. (1989), The Mexico Earthquake of September 19, 1985 – Behavior of Steel Buildings, Earthquake Spectra, Vol. 5, No. 1. Pp. 51 – 88. DOI: https://doi.org/10.1193/1.1585511
Popov E.P. y Tsai K.C. (1989) “Performance of Large Seismic Steel Moment Connections Under Cyclic Loads”, Engineering Journal, 2a Quarter, American Institute of Steel Construction.
Ricles J.M., Mao C., Lu L.W. y Fisher J.W. (2000), “Development and Evaluation of Improved Details for Ductile Welded Unreinforced Flange Connections”, SAC BD 00-24, SAC Joint Venture.
SAC (1995), “Interim Guideless: Evaluation, Repair, Modification and Design of Welded Steel Moment Frame Structures. Program to Reduce the Earthquake Hazards of Steel Moment Frame Structures. Federal Emergency Management Agency. Report FEMA 267/SAC-95-02. SAC Joint Venture. Sacramento, California.
SAC (1997), “Interim Guideless Advisory No. 1: Supplement to FEMA 267. Program to Reduce the Earthquake Hazards of Steel Moment Frame Structures. Federal Emergency Management Agency. Report FEMA 267A/SAC-96-03. SAC Joint Venture. Sacramento, California.
Santiago A. (2021), “Comportamiento de Conexiones de Marcos de Acero Ante Demandas Sísmicas”, Tesis de Maestría, Universidad Nacional Autónoma de México.
Tapia E. y Tena A. (2001), “Comparación de los efectos observados durante los sismos de México (1985), Northridge (1994) y Kobe (1995) y su impacto en las Normas de Diseño para Estructuras Metálicas del RCDF-2001”, Memorias, XIII Congreso Nacional de Ingeniería Sísmica, ID. IV-08. Guadalajara, Jal. Noviembre.
Tapia E, García J.S. y Del Rincón A., (2016), "Estudio paramétrico del modelado inelástico de contravientos de acero", Revista de Ingeniería Sísmica, SMIS. No. 94. Pp. 49-74. DOI: dx.doi.org/10.18867/ris-0
Tapia E. y García J.S. (2019), “Comportamiento de estructuras de acero durante los sismos de septiembre del 2017”, Revista de Ingeniería Sísmica, No. 101, pp. 36-52. DOI: https://doi.org/10.18867/ris.101.499
Tapia E. y García J.S., (2019a), “Inelastic response of ductile eccentrically braced frames”, Journal of Building Engineering, No. 25. DOI: https://doi.org/10.1016/j.jobe.2019.100903
Tapia E., Santiago A., Guerrero H. y Chávez M. (2020), “Comportamiento experimental de conexiones de marcos de acero ante demandas sísmicas”, Revista de Ingeniería Sísmica, No. 103, pp. 37-55. DOI: https://doi.org/10.18867/ris.103.562
Tapia E. y Rangel G. (2018), Sobrerresistencia del material de perfiles ir de acero A992 con fines de Diseño, Memorias XXI Congreso Nacional de Ingeniería Estructural, Campeche, Méx.
Venti M. y Engelhardt M.D. (2000), “Test of a Free Flange Connection with a Composite Floor Slab”, SAC Report 00/18, SAC Joint Venture.
Whittaker A.S. & Gilani A. (1996), “Washington High School Reconstruction - Cyclic Testing of Steel Beam-Column Connections”, Report No. EERCL-STI/96-04, Earthquake Engineering Research Center, University of California, Berkeley, CA.
Tremblay R., Timler P., Bruneau M. y Filiatrault A., (1995), “Performance of steel structures during the 1994 Northridge earthquake”, Canadian Journal of Civil Engineering, Vol. 22, pp. 338-360. DOI: https://doi.org/10.1139/l95-046
Zhang X., Zheng S. y Zhao X. (2019), Seismic Performance of Steel Beam-to-Column Moment Connections with Different Structural Forms, Journal of Structural Engineering, Vol. 158, pág. 130-142. DOI: 10.1016/j.jcsr.2019.03.028

Publicado

2022-12-29

Cómo citar

Santiago Flores, A., & Tapia Hernández, E. (2022). RESPUESTA SÍSMICA DE CONEXIONES DE ACERO HACIA EL EJE MENOR DE LA COLUMNA . Revista De Ingeniería Sísmica , (109), 92–109. https://doi.org/10.18867/ris.109.631

Número

Sección

Artículos

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.