EL FAM, UNA ALTERNATIVA DE ANÁLISIS DINÁMICO NO LINEAL

Autores/as

  • Carlos Mauricio Patlán Manjarrez Estudiante Universidad Nacional Autónoma de México
  • Hugo Hernández Barrios

DOI:

https://doi.org/10.18867/ris.114.663

Palabras clave:

Método de Analogía de la Fuerza, Análisis no lineal, bilineal

Resumen

El Método de Analogía de la Fuerza, FAM, (Force Analogy Method) es una herramienta innovadora que permite realizar el análisis estático y dinámico de una estructura considerando la no linealidad del material. El FAM puede usarse considerando historias de tiempo aplicadas en la base o en la masa de cualquier sistema; el FAM es una herramienta que permite hacer análisis con precisión y rapidez, con una gran eficiencia computacional. La metodología puede emplearse en sistemas con control pasivo y activo, además de considerar modelos de comportamiento a flexión, carga axial, cortante y efectos no lineales debido a la geometría del elemento. En este artículo, se presenta en detalle el FAM, proporcionando sus bases teóricas y una guía para su implantación práctica. Se muestran ejemplos prácticos que abarcan desde sistemas de un grado de libertad hasta estructuras de varios niveles, considerando no linealidad debida a la flexión utilizando el modelo bilineal. Los resultados se comparan con los obtenidos por los métodos tradicionales de análisis, obteniéndose resultados similares.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alvarez, R. J., y Birnstiel, C. (1969). Inelastic Analysis of Multistory Multibay Frames. Journal of the Structural Division, 95(11), 2477–2506. https://doi.org/10.1061/JSDEAG.0002401

Aoyama, H. y Sugano T., (1968). A generalized inelastic analysis of reinforced concrete structures based on tests of members, Recent Researches of Structural Mechanics, Uno-Shoten, Tokyo, pp. 15-30.

Bahar, H., y Bahar, A. (2018). A force analogy method ( FAM ) assessment on different static condensation procedures for frames with full Rayleigh damping. The Structural Design of Tall and Special Buildings, 27(9), e1468. https://doi.org/10.1002/tal.1468

Calofir, V., Nica, G. B., Stamatescu, G., y Arghira, N. (2019). Dynamic Nonlinear Modelling of Building Structure Using the Force Analogy Method. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 1068–1073. https://doi.org/10.1109/IDAACS.2019.8924408

Calofir, V., Nica, B. G., y Pavel, F. (2020). A Nonlinear Model to Analyze the Structures Pounding Forces During Earthquakes. Arabian Journal for Science and Engineering, 45(10), 8303–8314. https://doi.org/10.1007/s13369-020-04633-0

Chajes, A. (1968). Inelastic Deflections of Beams. Journal of the Structural Division, 94(6), 1549–1565. https://doi.org/10.1061/JSDEAG.0001980

Chao, S., y Loh, C. (2007). Inelastic response analysis of reinforced concrete structures using modified force analogy method. Earthquake Engineering & Structural Dynamics, 36(12), 1659–1683. https://doi.org/10.1002/eqe.710

Chopra, A. K. (2012). Dynamics of structures: theory and applications to earthquake engineering. Cuarta ed. Prentice Hall.

Clough R.W., Benuska K.L. y Wilson E.L., (1965). Inelastic earthquake response of tall buildings. Proceedings of the 3er World Conference on Earthquake Engineering, New Zealand, II, pp. 68-69.

Giberson, M. F. (1969). Two Nonlinear Beams With Definitions of Ductility. Journal of the Structural Division, 95(2), 137–157. https://doi.org/10.1061/JSDEAG.0002184

Hatzigeorgiou, G. D., y Beskos, D. E. (2011). Dynamic inelastic structural analysis by the BEM: A review. Engineering Analysis with Boundary Elements, 35(2), 159–169. https://doi.org/10.1016/j.enganabound.2010.08.002

Iancovici, M., Ionică, G., Pavel, F., Moța, F., y Nica, G. B. (2022). Nonlinear dynamic response analysis of buildings for wind loads. A new frontier in the structural wind engineering. Journal of Building Engineering, 47, 103708. https://doi.org/10.1016/j.jobe.2021.103708

Iancovici, M., y Nica, G. B. (2023). Time-Domain Structural Damage and Loss Estimates for Wind Loads: Road to Resilience-Targeted and Smart Buildings Design. Buildings, 13(3), 734. https://doi.org/10.3390/buildings13030734

Li, G., Fahnestock, L. A., Li, H.-N., y Wang, S.-Y. (2012). Nonlinear Cyclic Modeling of Concentrically Braced Frames. 15th World Conference on Earthquake Engineering 2012 (15WCEE), Lisbon, Portugal.

Li, G., y Li, H. (2011). Seismic response analysis of structure with energy dissipation devices using force analogy method. The Structural Design of Tall and Special Buildings, 20(3), 291–313. https://doi.org/10.1002/tal.541

Li, G., Li, H., y Zhang, Y. (2015). Displacement estimation of nonlinear structures using the force analogy method. The Structural Design of Tall and Special Buildings, 24(1), 59–72. https://doi.org/10.1002/tal.1154

Li, L., Liu, Q., y Li, H. (2011). Inelastic Structural Control Based on MBC and FAM. Mathematical Problems in Engineering, 2011(1), 460731. https://doi.org/10.1155/2011/460731

Li, G., Zhang, Y., y Li, H.-N. (2013). Seismic Damage Analysis of Reinforced Concrete Frame Using the Force Analogy Method. Journal of Engineering Mechanics, 139(12), 1780–1789. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000618

Li, G., Zhang, Y., y Li, H. (2014a). Nonlinear seismic analysis of reinforced concrete frames using the force analogy method. Earthquake Engineering & Structural Dynamics, 43(14), 2115–2134. https://doi.org/10.1002/eqe.2439

Li, G., Zhang, Y., y Li, H.-N. (2015). Nonlinear Seismic Analysis of Reinforced Concrete Bridges Using the Force Analogy Method. Journal of Bridge Engineering, 20(10), 04014111. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000721

Li, G., Zhang, F., Zhang, Y., y Li, H. (2015). Nonlinear hysteretic behavior simulation of reinforced concrete shear walls using the force analogy method. The Structural Design of Tall and Special Buildings, 24(7), 504–520. https://doi.org/10.1002/tal.1177

Li, G., y Wong, K. K. F. (2014). Theory of Nonlinear Structural Analysis: The Force Analogy Method for Earthquake Engineering. Primera edición. Wiley and Sons. ISBN: 978-1-118-71806-3.

Lignos, D. G., y Krawinkler, H. (2011). Deterioration Modeling of Steel Components in Support of Collapse Prediction of Steel Moment Frames under Earthquake Loading. Journal of Structural Engineering, 137(11), 1291–1302. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376

Linde, P., y Bachmann, H. (1994). Dynamic modelling and design of earthquake‐resistant walls. Earthquake Engineering & Structural Dynamics, 23(12), 1331–1350. https://doi.org/10.1002/eqe.4290231205

Munteanu, R. I., Calofir, V., Iancovici, M., Nica, G. B., y Iliescu, S. S. (2020). Modelling of Structural Damage Caused by Seismic Pounding of Multi-Degree of Freedom Inelastic Structures. 2020 24th International Conference on System Theory, Control and Computing (ICSTCC), 608–613. https://doi.org/10.1109/ICSTCC50638.2020.9259756

Munteanu, R. I., Moţa, F., Calofir, V., y Baciu, C. (2022). New Approach to Nonlinear Dynamic Analysis of Reinforced Concrete 3D Frames; An Accurate and Computational Efficient Mathematical Model. Applied Sciences, 12(3), 1692. https://doi.org/10.3390/app12031692

Nica, G. B., Calofir, V., y Corâci, I. C. (2018). A State Space Formulation for the Evaluation of the Pounding Forces During Earthquake. Mathematical Modelling in Civil Engineering, 14(2), 37–49. https://doi.org/10.2478/mmce-2018-0006

Nica, G. B., Munteanu, R. I., Calofir, V., y Iancovici, M. (2022). Modelling nonlinear behavior of 3 D frames using the Force Analogy Method. Structures, 35, 1162–1174. https://doi.org/10.1016/j.istruc.2021.08.097

Ningthoukhongjam, S. S., y Singh, K. D. (2020a). Mass irregularity effect on seismic response of moment‐resisting steel frame by nonlinear time history analysis using force analogy method. The Structural Design of Tall and Special Buildings, 30(2), e1823. https://doi.org/10.1002/tal.1823

Ningthoukhongjam, S. S., y Singh, K. D. (2020b). Inelastic Time History Analysis of Mass Irregular Moment Resisting Steel Frame Using Force Analogy Method. Advances in Structural Vibrations. Lecture Notes in Mechanical Engineering, pp. 171–183, https://doi.org/10.1007/978-981-15-5862-7_15

Ningthoukhongjam, S. S., y Singh, K. D. (2021). Analysis of Mid-Rise Moment Resisting Steel Frames by Nonlinear Time History Analysis using Force Analogy Method. Journal of The Institution of Engineers (India): Series A, 102(4), 901–918. https://doi.org/10.1007/s40030-021-00577-2

NTC-DS-17 (2017), Normas técnicas complementarias para el diseño por sismo, Gaceta Oficial de la Ciudad de México, Vigésima época, No. 220 Bis, diciembre.

Safaei, S., Taslimi, A., y Tehrani, P. (2019). A study on the accuracy of force analogy method in nonlinear static analysis. The Structural Design of Tall and Special Buildings, 28(13), e1654. https://doi.org/10.1002/tal.1654

SAP2000 (2009). Computers and Structures, Inc. Versión 14.1.

Toloue, I., Liew, M. S., Harahap, I. S. H., y Lee, H. E. (2018). A novel approach to enhance the accuracy of vibration control of Frames. E3S Web of Conferences, 34, 01027. https://doi.org/10.1051/e3sconf/20183401027

Toloue, I., Liew, M. S., Harahap, I. S. H., y Lee, H. E. (2020). Experimental evaluation of force analogy method (FAM) by element type. Earthquake Engineering and Engineering Vibration, 19(1), 137–147. https://doi.org/10.1007/s11803-020-0552-3

Wang, Q.-A., Wu, Z.-Y., y Wang, Y. (2019). Multi-dimensional fragility analysis considering structural cumulative plastic dissipation energy and its application to a NEES frame structure. 13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13, Seoul, South Korea, pp. 26-30, https://doi.org/10.22725/ICASP13.133

Wong, K. K. (2008). Seismic Energy Dissipation of Inelastic Structures with Tuned Mass Dampers. Journal of Engineering Mechanics, 134(2), 163–172. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:2(163)

Wong, K. K. F. (2011). Seismic energy analysis of structures with nonlinear fluid viscous dampers—Algorithm and numerical verification. The Structural Design of Tall and Special Buildings, 20(4), 482–496. https://doi.org/10.1002/tal.602

Wong, K. K. F., y Harris, J. L. (2010). Nonlinear Modal Analysis and Superposition. Proccedings of 9th US National and 10th Canadian Conference Earthquake Engineering, pp. 25-29.

Wong, K. K. F., y Harris, J. L. (2012). Seismic damage and fragility analysis of structures with tuned mass dampers based on plastic energy. The Structural Design of Tall and Special Buildings, 21(4), 296–310. https://doi.org/10.1002/tal.604

Wong, K. K., y Johnson, J. (2009). Seismic Energy Dissipation of Inelastic Structures with Multiple Tuned Mass Dampers. Journal of Engineering Mechanics, 135(4), 265–275. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:4(265)

Wong, K. K. F., y Pang, M. (2007). Energy density spectra in actively controlled inelastic structures—Application. Structural Control and Health Monitoring, 14(2), 279–300. https://doi.org/10.1002/stc.158

Wong, K. K. F., y Speicher, M. S. (2015). Dynamic effects of geometric nonlinearity on inelastic frame behavior for seismic applications. Proceeding of the Annual Stability Conference Structural Stability, Nashville, Tennessee, pp. 24-27.

Wong, K. K. F., y Wang, Y. (2001). Probabilistic structural damage assessment and control based on energy approach. The Structural Design of Tall Buildings, 10(4), 283–308. https://doi.org/10.1002/tal.186

Wong, K. K. F., y Wang, Y. (2003). Energy‐based design of structures using modified force analogy method. The Structural Design of Tall and Special Buildings, 12(5), 393–407. https://doi.org/10.1002/tal.234

Wong, K. K. F., y Wang, Z. (2007a). Seismic analysis of inelastic moment‐resisting frames Part I: Modified force analogy method for end offsets. The Structural Design of Tall and Special Buildings, 16(3), 267–282. https://doi.org/10.1002/tal.314

Wong, K. K. F., y Wang, Z. (2007b). Seismic analysis of inelastic moment‐resisting frames Part II: Energy dissipation in deformable panel zones. The Structural Design of Tall and Special Buildings, 16(3), 283–299. https://doi.org/10.1002/tal.315

Wong, K. K. F., y Yang, R. (1999). Inelastic Dynamic Response of Structures Using Force Analogy Method. Journal of Engineering Mechanics, 125(10), 1190–1199. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:10(1190)

Wong, K. K. F., y Yang, R. (2000). Hybrid Control of Inelastic Structures during Earthquake. Key Engineering Materials, 177–180, 781–786. https://doi.org/10.4028/www.scientific.net/KEM.177-180.781

Wong, K. K. F., y Yang, R. (2001a). Effectiveness of structural control based on control energy perspectives. Earthquake Engineering & Structural Dynamics, 30(12), 1747–1768. https://doi.org/10.1002/eqe.76

Wong, K. K. F., y Yang, R. (2001b). Evaluation of response and energy in actively controlled structures. Earthquake Engineering & Structural Dynamics, 30(10), 1495–1510. https://doi.org/10.1002/eqe.74

Wong, K. K. F., y Wang, Y. (2001). Energy‐based damage assessment on structures during earthquakes. The Structural Design of Tall Buildings, 10(2), 135–154. https://doi.org/10.1002/tal.174

Wong, K. K. F., y Yang, R. (2003). Predictive instantaneous optimal control of inelastic structures during earthquakes. Earthquake Engineering & Structural Dynamics, 32(14), 2179–2195. https://doi.org/10.1002/eqe.322

Wong, K. K. F., y Zhao, D. (2005a). A numerical study based on sequential procedure for optimally placing active controllers. The Structural Design of Tall and Special Buildings, 14(4), 279–297. https://doi.org/10.1002/tal.263

Wong, K. K. F., y Zhao, D. (2005b). Effectiveness of inelastic structural control based on elastic displacement and energy. Structural Control and Health Monitoring, 12(1), 47–64. https://doi.org/10.1002/stc.51

Wong, K. K., y Zhao, D. (2007). Uncoupling of Potential Energy in Nonlinear Seismic Analysis of Framed Structures. Journal of Engineering Mechanics, 133(10), 1061–1071. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:10(1061)

Yang, R., Wong, K. K. F., y Pan, T.-C. (2004). Predictive inelastic state control of modern structures during earthquakes. Structural Control and Health Monitoring, 11(4), 291–309. https://doi.org/10.1002/stc.44

Zhang, X., Wong, K. K. F., y Wang, Y. (2007). Performance assessment of moment resisting frames during earthquakes based on the force analogy method. Engineering Structures, 29(10), 2792–2802. https://doi.org/10.1016/j.engstruct.2007.01.024

Zhang, Y., Li, H.-N., y Li, G. (2016). Seismic Performance Assessment of Offshore Reinforced Concrete Bridges Using the Force Analogy Method. International Journal of Structural Stability and Dynamics, 16(05), 1550012. https://doi.org/10.1142/S0219455415500121

Zhao, D., y Wong, K. K. (2006). New Approach for Seismic Nonlinear Analysis of Inelastic Framed Structures. Journal of Engineering Mechanics, 132(9), 959–966. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:9(959)

Zienkiewicz, O.C. y Taylor, R.L., (2005). The finite element method for solid and structural mechanics, Sexta ed. Oxford, Elsevier-Butterworth-Heinemann.

Descargas

Publicado

2025-01-31

Cómo citar

Patlán Manjarrez, C. M., & Hernández Barrios, H. (2025). EL FAM, UNA ALTERNATIVA DE ANÁLISIS DINÁMICO NO LINEAL. Revista Ingeniería Sísmica , (114), 1–34. https://doi.org/10.18867/ris.114.663

Número

Sección

Artículos

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.